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Motivations

• Low temperature electron transport in strongly disordered
media

• Strong disorder: presence of many (infinite) relevant
energetic scales

Message: Linear response coefficients are not explicit and are
given as solutions of variational problems on infinite
dimensional spaces. Tuning a parameter (e.g. temperature going
to zero) can amplify the separation of the energetic scales and a
proper universal scaling behavior can emerge
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Random walk Xt on the discrete torus

• TdN = Zd/NZd

• (Xt)t≥0: continuous time random walk on TdN
• c(x, y): probability rate for a jump x y y

• c(x, y) = 0 if |x− y| 6= 1

• P
(
Xt+dt = y|Xt = x

)
= c(x, y)dt+ o(dt)
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Random walk Yt on Zd

• π : Zd → TdN canonical projection
• (Yt)t≥0 random walk on Zd with N–periodic jump

probability rates c(x, y)
• π(Yt) = Xt
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Assumption

Assumption

(Xt)t≥0 is irreducible and its unique invariant distribution µ
is reversible, i.e. µ satisfies the detailed balance condition

µ(x)c(x, y) = µ(y)c(y, x) ∀x, y ∈ TdN .

Reversibility: if X0 has law µ, then ∀T > 0 the random
trajectories (

Xt

)
0≤t≤T and

(
XT−t

)
0≤t≤T

have the same law.
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External field

• External field=λw, λ > 0 tuning parameter, w ∈ Rd

• (Xλ
t )t≥0: perturbed random walk on TdN

• (Y λ
t )t≥0: perturbed random walk on ZdN

• cλ(x, y): perturbed jump probability rate
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Local detailed balance

• Local detailed balance:

cλ(x,y)

cλ(y,x)
=

c(x,y)

c(y,x)
eβ∆(x,y) ,

• β = 1/kT : inverse temperature

• ∆(x, y): work done by the field on the particle jumping
xy y

• ∆(x, y) = λw · (y − x)

• Example: cλ(x, y) = eλ
β
2
w·(y−x)c(x, y)
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Asymptotic velocity

• External field=λw, λ > 0, w ∈ Rd

• µλ: unique invariant distribution of (Xλ
t )t≥0

• ψλ(x) :=
∑
|e|=1 cλ(x, x+ e)e instantaneous local drift

• vλ(w) := µλ (ψλ)

Fact

vλ(w) is the asymptotic velocity:

vλ(w) = lim
t→∞

d

dt
E[Xλ

t ] = lim
t→∞

d

dt
E[Y λ

t ] ,

vλ(w) = lim
t→∞

Y λ
t

t
a.s.
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Mobility matrix

• ψ(x) :=
∑
|e|=1 c(x, x+ e)e instantaneous local drift at

equilibrium

• ψ(x) = (ψ1(x), . . . , ψd(x))

• Lf(x) =
∑
|e|=1 cx,x+e (f(x+ e)− f(x)) Markov generator

• L: symmetric operator in L2(µ) (positive spectral gap)

Fact

It holds
∂λ=0vλ(w) = σw ∀w ∈ Rd ,

where σ is the d× d symmetric matrix

σij := βµ
(
c(·, ·+ ei)

)
δi,j − β

∫ ∞
0
〈ψi, esLψj〉L2(µ)ds

σ: mobility matrix
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Diffusion matrix and Einstein’s relation

Fact

As ε ↓ 0 the diffusively rescaled random walk (εYε−2t)t≥0
converges to a Brownian motion with diffusion matrix D,
satisfying the Einstein relation:

σ =
β

2
D

Dphys = D/2, hence σ = βDphys

In what follows, we add the subindex N : σN , DN
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Disordered systems: random conductance model

• Ed = {unoriented edges of Zd}
• ω =

(
ω(x, y) : {x, y} ∈ Ed

)
stationary ergodic random field

• ω(x, y) > 0 and E[ω(x, y)] < +∞
• Fixed ω and N , ω(N) is the N -periodization of ω

Figure: Left: ω. Right: ω(N). N = 3.
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N–mobility and N–diffusion matrix

• Given ω,N , let Xt, X
λ
t , Yt, Y

λ
t as before, where

c(x, y) := ω(N)(x, y) .

• σN (ω): mobility matrix

• DN (ω): diffusion matrix

• Recall: σN (ω) = β
2DN (ω)

• P: law of the random field ω
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Infinite volume limit

Theorem (Homogenization)

For P–a.a. ω, {
limN→∞ σN (ω) = σ ,

limN→∞D(ω) = D ,

where σ = β
2D and D is the d× d symmetric matrix

a ·Da = inf
f∈L∞(P)

1

2

∑
e:|e|=1

∫
dP(ω)ω(0, e) (a · e−∇ef(ω))2

∀a ∈ Rd, where ∇ef(ω) := f(τeω)− f(ω).
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σ,D enter into play in other problems

• Random walk on Zd

• ω(x, y)=probability rate for a jump xy y

• ω(x, y) bounded from above.

Fact (P. Mathieu, JSP 2008)

Diffusion behavior: For P–a.a. ω the diffusively rescaled
random walk converges to a Brownian motion with diffusion
matrix D

Fact (d = 1 H.C. Lam, J Depauw, SPA 2016; d ≥ 2 N.Gantert,
X.Guo, J.Nagel, AP 2017)

Linear response: Under the field λw, for P–a.a. ω the
asymptotic velocity vλ(w) of the perturbed random walk is
ω-independent and satisfies ∂λ=0vλ(w) = σw.
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Random resistor network

• Fix ω

• node set: ΛL := [−L,L]d ∩ Zd

• filaments: each edge {x, y}, with x, y ∈ ΛL, has
conductivity ω(x, y)

• CL(ω): effective conductivity along 1st direction
(V=electrical potential)
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Limit behavior of CL(ω)

For simplicity let D be diagonal

Theorem (A.F. 2019+)

Let E[ω(0, ei)
2] < +∞ for all i = 1, 2, . . . , d. Then, P–a.a. ω,

lim
L→∞

L2−dCL(ω) = D1,1 .
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Strongly disordered systems

• ω(x, y) = e−βA(x,y)

• (A(x, y) : {x, y} ∈ Ed): β–independent i.i.d. random
variables

• Energetic barriers

• Interesting regime: T � 1, i.e. β � 1

• D = D(β)

Alessandra Faggionato Low temperature scaling of linear response coefficients in strongly disordered systems



Low temperature scaling limit of D(β)

• Take isotropic medium. Hence D(β) = D1,1(β)I
• ω(x, y) = e−βA(x,y)

• G(θ): graph with edges {x, y} such that A(x, y) ≤ θ, i.e.
ω(x, y) ≥ e−βθ

Theorem (A.F. 2019+)

Let θc := inf{θ : G(θ) percolates }. Then

lim
β→∞

− 1

β
lnD1,1(β) = θc .

D(β) ≈ e−θcβI
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Bond percolation on Zd with parameter p

• We build a random graph by keeping each edge of Zd with
probability p (otherwise we erase it), independently for
each edge

• pc(d) ∈ (0, 1): critical parameter p for the existence of
infinite connected component
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θc and bond percolation

• G(θ): graph with edges {x, y} such that A(x, y) ≤ θ

• G(θ): bond percolation on Zd with parameter
p(θ) := P (A(x, y) ≤ θ)

• θc := inf{θ : G(θ) percolates }
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D1,1(β) ≥ e−θcβ(1+o(1))

1 D1,1(β) = limL→∞ L
2−dCL(ω)

2 CL(ω) ≥ effective conductivity of G(θc + ε) on ΛL
3 Edges in G(θc + ε) have conductivity ≥ e−β(θc+ε)

4 G(θc + ε) percolates
=⇒ on ΛL it has O(Ld−1) edge-disjoint left right crossings

=⇒ effective conductivity of G(θc + ε) ≥ O(Ld−2)e−β(θc+ε)
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D1,1(β) ≤ e−θcβ(1+o(1))

Variational characterization:

a ·Da = inf
f∈L∞(P)

1

2

∑
e:|e|=1

∫
dP(ω)ω(0, e) (a · e−∇ef(ω))2

Strategy: Take a clever test function f
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Mott variable range hopping

• Doped semiconductors: crystalline solids with inserted
atoms of a different type, called impurities

• Electron wavefunctions are localized around impurities
and can hop by quantum tunneling

• In the regime of low impurity density, one considers
independent random walks and encodes the electron
interactions into the jump rates.

• Final object: random walk on a marked simple point
process
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Marked point process

• {•} = {xi}: simple point process,
random locally finite subset of Rd

• Ei: mark of xi, real random variable

• ω = {(xi, Ei)} marked simple point process
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Marked Poisson point process

• {xi} is Poisson point process on Rd of intensity λ

1 λ = E
[∣∣{xi} ∩ [0, 1]d

∣∣]
2 A,B ⊂ Rd and A ∩B = ∅ =⇒∣∣{xi} ∩A∣∣ and

∣∣{xi} ∩B∣∣ are independent random variables

• Points xi are marked by i.i.d. random variables Ei
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Random walk (Xω
t )t≥0

• ω = {(xi, Ei)} marked point process

• (Xω
t )t≥0 continuous time random walk

• Markov chain such that

� state space = {xi}
� P (Xω

t+dt = xj |Xω
t = xi) = cxi,xj

(ω)dt+ o(dt), i 6= j
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Jump probability rates

cxi,xj (ω) = exp
{
− 2

γ
|xi − xj | −

β

2
(|Ei|+ |Ej |+ |Ei − Ej |)

}
• γ =localization length

• β = 1
kT

• k =Boltzmann constant

• T =absolute temperature
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Group of translations

Given x ∈ Rd and ω = {(xi, Ei)},
define the x–translated configuration as

τxω := {(xi − x,Ei)}

P: law of ω = {(xi, Ei)}. P stationary and ergodic.
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Palm distribution

P0: Palm distribution associated to P

• Probability measure with support {ω : 0 ∈ {xi} },
• Roughly, P0 = P

(
· |0 ∈ {xi}

)
• By ergodicity,

P0 = lim
k→∞

Avx:|x|≤k
x∈{xi}

δτxω .
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Effective diffusion matrix D

• Given x ∈ Rd, ∇xf(ω) := f(τxω)− f(ω)

• D: d× d symmetric matrix such that, ∀a ∈ Rd,

a ·Da = inf
f∈L∞(P0)

1

2

∫
dP0(ω)

∑
i

c0,xi(ω) (a · xi +∇xif)2

• P0: Palm distribution

Under very general assumptions:

Theorem (A.F., P.Caputo, T. Prescotti, AIHP 2013)

For P–a.a. ω, as ε ↓ 0 the diffusively rescaled random walk(
εXω

ε−1/2t

)
t≥0

converges to a Brownian motion with diffusion

matrix D.
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Linear response

One expects that, when applying an external field λw, the
perturbed random walk Xω,λ

t has asymptotic velocity vλ(w)
satisfying {

∂λ=0vλ(w) = σw ,

σ = β
2D .

For d = 1 it is proved (A.F., N. Gantert, M. Salvi AIHP, 2019)
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Miller-Abrahams random resistor network

Electrical filament with conductivity cxi,xj (ω)
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Infinite volume effective conductivity

For simplicity: take D diagonal

CL(ω): conductivity along the first coordinate
(electrical current in the box, along first direction )

Theorem (A.F. 2019+)

For P–a.a. ω we have

lim
L→∞

L2−dCL(ω) = D1,1 .
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Mott law

Mott variable range hopping:

cxi,xj (ω) = exp
{
− 2

γ
|xi − xj | −

β

2
(|Ei|+ |Ej |+ |Ei − Ej |)

}
D1,1 = D1,1(β)

Physics:

1 {Ei} i.i.d. random variables,
law c|E|αdE around zero, α ≥ 0

2 Mott law: D1,1(β) ≈ e−C β
α+1
α+1+d

, β � 1

3 C=?
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Mott law

Homogenization + Percolation results (with A.H.Mimun):

Theorem (A.F. 2019+)

Let ω be a marked Poisson point process of intensity λ and let
Ei ≥ 0, then

lim
β→+∞

−β−
α+1
α+1+d lnD1,1(β) = (c0/λ)

1
α+1+d

where c0 admits a percolative characterization
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• Ei ≥ 0 =⇒ FKG inequality

• Universality:
Stationary and ergodic simple point processes are in the
domain of attraction of PPP by thinning+rescaling
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• Ei ≥ 0 =⇒ FKG inequality

• Universality:

� Let ξ be a stationary ergodic simple point process of
intensity λ = E

[
|ξ ∩ [0, 1]d|

]
� Given p > 0, let

[ξ]p := p–thinning of ξ

i.e. [ξ]p= site percolation on ξ with parameter p

� Then
lim
p↓0

p−1/d[ξ]p = PPP with intensity λ

Alessandra Faggionato Low temperature scaling of linear response coefficients in strongly disordered systems


