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Introduction

Consider a stochastic dynamics (X (t) ; t ≥ 0) ”at equilibrium ”,
with law P.

Introduce a family of ”perturbed dynamics ” (Xλ(t) ; t ≥ 0), with
law Pλ. (λ ∈ [0, 1] is the ”strength” of the perturbation.
If λ = 0, then Xλ = X . We care about small λ’s. )

Let (A(t) ; t ≥ 0)) be an additive functional. (Observable.)
Note E[A(t)] = tE[A(1)].

AIM: Compare 1
T Eλ[A(T )] and E[A(1)].

In particular: express the linear response ∂λ=0
1
T Eλ[A(T )] as a

correlation or variance or covariance.

DIFFICULTY: T may be very large or even infinite.

We assume that: X is reversible.
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Model to start with: diffusions on a torus.

Let Td = Rd/Zd be the d-dimensional torus.
Let (Xx(t) ; t ≥ 0, x ∈ Td) be the solution of the sde:

dXx(t) = b(Xx(t))dt + σ(Xx(t))dWt ; Xx(0) = x . (1)

Here (Wt ; t ≥ 0) is a Td -valued Brownian motion defined on
some probability space (W,A,P).
σ = (σ(x) ; x ∈ Td) is a smooth field of symmetric non-negative
matrices over Td ; b = (b(x) ; x ∈ Td) is a smooth vector field.

The increment Xx(t + ∆t)− Xx(t) follows a Gaussian law

N
(
b(Xx(t))∆t; a(Xx(t))∆t

)
independent of the past before time t. (a = σ2.)
The stochastic process (Xx(t) ; t ≥ 0, x ∈ Td) is Markov with
generator

Lf (x) =
1

2

∑
j ,k

aj ,k(x)∇j f (x)∇k f (x) +
∑
j

bj(x)∇j f (x) .
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Model to start with: diffusions on a torus.

Recall

dXx(t) = b(Xx(t))dt + σ(Xx(t))dWt ; Xx(0) = x .

We assume that

a(x) = σ(x)2 ; b(x) =
1

2
div(a(x)) ; L =

1

2
div(a∇) .

The normalized Lebesgue measure on Td , say π, is a reversible and
invariant probability measure.

Notation: C(R+;Td) be the set of continuous functions from R+

to Td . We use the notation Px to denote the law of
(Xx(t) ; t ≥ 0). Similarly for Pπ (if x has distribution π). So Pπ is
a measure on path space. We use the notation (X (t) ; t ≥ 0) for a
continuous path in C(R+;Td).
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Perturbations

To define the perturbed process, let us consider a smooth vector
field V defined on Td and a real parameter λ > 0 and let
(Xλ

x (t) ; t ≥ 0, x ∈ Td) be the solution of the stochastic
differential equation:

Xλ
x (0) = x ,

dXλ
x (t) = b(Xλ

x (t))dt + λσ(Xλ
x (t))V(Xλ

x (t))dt + σ(Xλ
x (t))dWt .

(2)

Then (Xλ
x (t) ; t ≥ 0, x ∈ Td) is Markov with generator

Lλ =
1

2
div(a∇) + λσV · ∇ .

Notation: as before Pλx is the law of (Xλ
x (t) ; t ≥ 0) on path space.

Also Pλπ when we are at equilibrium.
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Additive functionals (observables)

We may consider

symmetric additive functionals e.g. A(t) =
∫ t

0 f (X (s)) ds,
f : Td → R,
or
anti-symmetric additive functionals e.g. let (Z (t) ; t ≥ 0) be the
lift of (X (t) ; t ≥ 0) to Rd . More generally

A(t) =

∫ t

0
g(X (s)) ◦ dX (s) ,

g : Td → Rd a vector field.

Observe that all anti-symmetric additive functionals have zero
mean: for all t, Eπ[

∫ t
0 g(X (s)) ◦ dX (s)] = 0 .
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lift of (X (t) ; t ≥ 0) to Rd . More generally

A(t) =

∫ t

0
g(X (s)) ◦ dX (s) ,

g : Td → Rd a vector field.

The words symmetric vs anti-symmetric refer to symmetry vs
anti-symmetry with respect to time reversal.
Anti-symmetric additive functionals correspond to currents in
physics.

Observe that all anti-symmetric additive functionals have zero
mean: for all t, Eπ[

∫ t
0 g(X (s)) ◦ dX (s)] = 0 .
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Additive functionals

For diffusion processes (as in Equation (1)), symmetric and
anti-symmetric additive functionals are related by∫ t

0
g(Xx(s)) ◦ dXx(s) = mt +

1

2

∫ t

0
div(ag)(Xx(s)) ds ,

where m is the martingale

mt =

∫ t

0
(σg)(Xx(s)) · dWs

under P.

Martingales are always easy to deal with. Results about
anti-symmetric additive functionals transfer to symmetric additive
functionals easily with the formula above. But ...

In the rest of the talk we focus on
anti-symmetric additive functionals.
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Additive functionals

For diffusion processes (as in Equation (1)), symmetric and
anti-symmetric additive functionals are related by∫ t

0
g(Xx(s)) ◦ dXx(s) = mt +

1

2

∫ t

0
div(ag)(Xx(s)) ds ,

where m is the martingale

mt =

∫ t

0
(σg)(Xx(s)) · dWs

under P.

observe we only get symmetric additive functionals where f is of
the form

f = div(ag) .

Such f ’s form the H−1 space.

In the rest of the talk we focus on
anti-symmetric additive functionals.
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Linear response with a fixed time horizon

Fix a time horizon T .
On the space of trajectories C([0,T ];Td), the two measures Pπ
and Pλπ are equivalent and the Radon-Nikodym derivative is given
by the Girsanov weight:

E
[
F (Xλ

x ([0,T ]))
]

= E
[
F (Xx([0,T ]))eλB(T )−λ2

2
〈B〉(T )

]
,

where

B(t) =

∫ t

0
V(Xx(s)) · dWs ; 〈B〉(T ) =

∫ T

0
|V(Xx(s))|2 ds .

So

∂λ=0
1

T
Eλπ[A(T )] =

1

T
Eπ
[
A(T )B(T )

]
.

Note at this point, we do not need the anti-symmetry of A. Not
even the fact that we are at equilibrium.
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When T → +∞
We first need to understand the T → +∞ limit in the formula:

∂λ=0
1

T
Eλπ[A(T )] =

1

T
Eπ
[
A(T )B(T )

]
.

Central limit Theorem:

Assume A(t) =
∫ t

0 g(X (s)) ◦ dX (s) with
∫
g2 dπ <∞ i.e.

Eπ[A(1)2] <∞. When T tends to +∞, then the law of the vector
1√
T

(A(T ),B(T )) under Pπ converges to a Gaussian law with a

certain covariance S and

1

T
Eπ
[
A(T )B(T )

]
→ S .

The CLT only holds in this form if π is ergodic. Otherwise we get
a mixture of Gaussian laws but the existence of S still holds.

Can we exchange the two limits?

lim sup
T→+∞

∣∣ 1

λT
Eλπ[A(T )]− S

∣∣→λ→0 0 ?
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LR scaling

J. Lebowitz, H. Rost ’94.

The limit in the scaling λ2T = 1 still exists:

1

λT
Eλπ[A(T )] =

1

λT
Eπ
[
A(T )eλB(T )−λ2

2
〈B〉(T )

]
= Eπ

[ 1√
T
A(T )e

1√
T
B(T )− 1

2T
〈B〉(T )]

→ E [ĀeB̄−
1
2
E [B̄2]

]
= E [ĀB̄] = S ,

where (Ā, B̄) is the Gaussian vector given by the C.L.T. with
covariance E [ĀB̄] = S.

Once again the CLT only holds when π is ergodic. Otherwise we
have a mixture of Gaussian laws and the conclusion still holds.
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T = +∞?

Conclusions so far:

Linear response holds for fixed times.

Linear response holds for larger times in the Lebowitz-Rost scaling
for observables that satisfy the CLT.

What about infinite times?
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Reversible diffusions in a random environment

On Rd .

dZx(t) = bω(Zx(t))dt + σω(Zx(t))dWt ; Zx(0) = x . (3)

aω(x) = σω(x)2 ; bω(x) =
1

2
div(aω(x)) ; Lω =

1

2
div(aω∇) .

Now the coefficients (σω(x) ; x ∈ Rd) are random i.e. depend on
some ω ∈ Ω with law Q on Ω.
We assume: Q is stationary and ergodic (w.r.t. translations in
Rd).

Perturbation

dZλx (t) = bω(Zλx (t))dt+λσω(Zλx (t))Vω(Zλx (t))dt+σω(Zλx (t))dWt .
(4)

Vω(x) = σω(x) · e1 .

(Constant force in direction e1.)
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Einstein relation

The C.L.T. holds for the process (Zx(t) ; t ≥ 0):

u·Σv = lim
T→+∞

1

T

(
E [u·Zx(T )v ·Zx(T )]−E [u·Zx(T )]E [v ·Zx(T )]

)
.

Σ is the asymptotic covariance matrix of Z .

`(λ) = lim
T→+∞

1

T
Zλx (T )

(Does the limit exist?)

∂λ=0`(λ) = Σe1 .

Einstein relation.
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The C.L.T. holds for the process (Zx(t) ; t ≥ 0):
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1

T

(
E [u·Zx(T )v ·Zx(T )]−E [u·Zx(T )]E [v ·Zx(T )]

)
.

Σ is the asymptotic covariance matrix of Z .

`(λ) = lim
T→+∞

1

T
Zλx (T )

(Does the limit exist?)

∂λ=0`(λ) = Σe1 .

Einstein relation.

C.L.T. was proved in the 80’s (Kipnis-Varadhan,
DeMasi-Ferrari-Goldstein-Wick ...). Since Q is ergodic, Σ is
deterministic.
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Einstein relation

The C.L.T. holds for the process (Zx(t) ; t ≥ 0):

u·Σv = lim
T→+∞

1

T

(
E [u·Zx(T )v ·Zx(T )]−E [u·Zx(T )]E [v ·Zx(T )]

)
.

Σ is the asymptotic covariance matrix of Z .

`(λ) = lim
T→+∞

1

T
Zλx (T )

(Does the limit exist?)

∂λ=0`(λ) = Σe1 .

Einstein relation.

The existence of the speed `(λ) is non trivial (Off-equilibrium
problem.) and not known in general.
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Einstein relation

The C.L.T. holds for the process (Zx(t) ; t ≥ 0):

u·Σv = lim
T→+∞

1

T

(
E [u·Zx(T )v ·Zx(T )]−E [u·Zx(T )]E [v ·Zx(T )]

)
.

Σ is the asymptotic covariance matrix of Z .

`(λ) = lim
T→+∞

1

T
Zλx (T )

(Does the limit exist?)

∂λ=0`(λ) = Σe1 .

Einstein relation.

This model is infinite dimensional. Very non-hyperbolic.
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Einstein relation: results

We establish the Einstein relation

∂λ=0`(λ) = Σe1 .

under two extra assumptions:
- σω is uniformly elliptic (bounded from below and above),
- σω has finite range of correlation (values of σω(x) and σω(y) are
independent when d(x , y) ≥ R for some fixed R.).
(Ref Gantert-Mathieu-Piatnitski 2012.)

Key step of the proof is: show the perturbed diffusion reaches
equilibrium by time T = 1/λ2; then compare with LR scaling.
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under two extra assumptions:
- σω is uniformly elliptic (bounded from below and above),
- σω has finite range of correlation (values of σω(x) and σω(y) are
independent when d(x , y) ≥ R for some fixed R.).
(Ref Gantert-Mathieu-Piatnitski 2012.)

The existence of the speed `(λ) was obtained by Shen in 2003.

Key step of the proof is: show the perturbed diffusion reaches
equilibrium by time T = 1/λ2; then compare with LR scaling.
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Einstein relation: results

We establish the Einstein relation

∂λ=0`(λ) = Σe1 .

under two extra assumptions:
- σω is uniformly elliptic (bounded from below and above),
- σω has finite range of correlation (values of σω(x) and σω(y) are
independent when d(x , y) ≥ R for some fixed R.).
(Ref Gantert-Mathieu-Piatnitski 2012.)

Key step of the proof is: show the perturbed diffusion reaches
equilibrium by time T = 1/λ2; then compare with LR scaling.

This is an example where, the smallest the perturbation, the
largest the equilibrium time. See later for a more elementary finite
dimensional example.
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Continuity of the variance

Let

u·Σ(λ)v = lim
T→+∞

1

T

(
E [u·Zλx (T )v ·Zλx (T )]−E [u·Zλx (T )]E [v ·Zλx (T )]

)
,

be the asymptotic covariance of the perturbed diffusion Zλ.

We also establish the Continuity of variance:

lim
λ→0

Σ(λ) = Σ .

(Ref: Mathieu-Piatnitski 2018.)

The continuity of variance is stronger than linear response.

Many questions (and few results) to extend to time-dependent
perturbations.
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Diffusions on a torus

Back to diffusions on a torus:

dXx(t) = b(Xx(t))dt + σ(Xx(t))dWt ; Xx(0) = x .

dXλ
x (t) = b(Xλ

x (t))dt + λσ(Xλ
x (t))V(Xλ

x (t))dt + σ(Xλ
x (t))dWt .

Questions (in increasing order of difficulty)

1. Continuity of ’steady state’: is 1
T Eλπ[A(T )] uniformly close to

1
T Eπ[A(T )] = Eπ[A(1)]?

2. Linear response: compute ∂λ=0
1
T Eλπ[A(T )] for large T?

3. Continuity of variance: what can we say about the variance of
A(T ) under Pλπ as T → +∞ and for small λ?

Below partial answers to 1.
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A degenerate example

On the interval [0, 1].

dXx(t) = b(Xx(t))dt + σ(Xx(t))dWt ; Xx(0) = x .

a = σ2 ; b =
1

2
diva .

Choose a(x) = xα for small positive x and α > 2 and a bounded
from below elsewhere.
Choose: V(x) = −1 for small positive x .

dXλ
x (t) =

α

2
(Xλ

x (t))α−1dt − λ(Xλ
x (t))

α
2 dt + (Xλ

x (t))
α
2 dWt .

Note x
α
2 is larger than xα−1 for small x .

Then, for all positive λ, for almost all trajectories,

Xλ
x (T )→ 0 .

For any λ > 0, the steady state is δ0!
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Lipschitz bounds

Recall A(t) =
∫ t

0 g(X (s)) ◦ dX (s).

THEOREM Choose g continuous.

Eλπ[A(T )] ≤ 4λT
(
‖V‖∞ +

2γ2

λ
√
T

)
‖σ · g‖∞ .

In particular

lim sup
λ→0

1

λ
lim sup
T→+∞

1

T

∣∣Eλπ[A(T )]
∣∣ ≤ 4‖V‖∞‖σ · g‖∞ .

The result says the steady state is always Lipschitz continuous: not
as a measure (See example before.) but as a distribution on
anti-symmetric additive functionals or, equivalently, on H−1.
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Lipschitz bounds

Recall A(t) =
∫ t

0 g(X (s)) ◦ dX (s).

THEOREM Choose g continuous.

Eλπ[A(T )] ≤ 4λT
(
‖V‖∞ +

2γ2

λ
√
T

)
‖σ · g‖∞ .

In particular

lim sup
λ→0

1

λ
lim sup
T→+∞

1

T

∣∣Eλπ[A(T )]
∣∣ ≤ 4‖V‖∞‖σ · g‖∞ .

Proof is based on forward-backward martingale decomposition for
A and concentration inequalities (Large deviations).
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Application to diffusions in a random environment

Recall

dZλx (t) = bω(Zλx (t))dt+λσω(Zλx (t))Vω(Zλx (t))dt+σω(Zλx (t))dWt .

Vω(x) = σω(x) · e1 .

Coefficients (σω(x) ; x ∈ Rd) are random stationary.
Let

`(λ) = lim
T→+∞

1

T
Zλx (T )

(if it exists.)
Then ∣∣`(λ)

∣∣ ≤ 4λ‖σ · e1‖2
∞ .
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Optimistic Lipschitz bounds

Recall A(t) =
∫ t

0 g(X (s)) ◦ dX (s).

Choose g continuous.

lim sup
λ→0

1

λ
lim sup
T→+∞

1

T

∣∣Eλπ[A(T )]
∣∣ ≤ 4‖V‖∞‖σ · g‖∞ .

The bound also holds for time-dependent parameters σ or
perturbation V.

THEOREM Assume V depends on time and that

lim
T→+∞

sup
x
‖VT (x)‖∞ = 0 .

Then

lim
T→+∞

1

T
Eλπ[A(T )] = 0 .
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End

Concluding remark:

Martingale techniques always useful for stochastic dynamics:
Girsanov transforms, CLT’s, deviation inequalities ... and flexible
enough to adapt to time-dependent models.

End of the talk.
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