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Introduction

Consider a stochastic dynamics (X(t); t > 0) "at equilibrium ",
with law P.

Introduce a family of " perturbed dynamics " (X*(t); t > 0), with
law PA. (X € [0, 1] is the "strength” of the perturbation.
If A =0, then X = X. We care about small \’s. )

Let (A(t); t > 0)) be an additive functional. (Observable.)
Note E[A(t)] = tE[A(1)].

AIM: Compare +EAA(T)] and E[A(1)].
In particular: express the linear response dy—o+E*A(T)] as a
correlation or variance or covariance.
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Introduction

Consider a stochastic dynamics (X(t); t > 0) "at equilibrium ",
with law P.

Introduce a family of " perturbed dynamics " (X*(t); t > 0), with
law PA. (X € [0, 1] is the "strength” of the perturbation.
If A =0, then X = X. We care about small \’s. )

Let (A(t); t > 0)) be an additive functional. (Observable.)
Note E[A(t)] = tE[A(1)].

AIM: Compare +EAA(T)] and E[A(1)].
In particular: express the linear response dy—o+E*A(T)] as a
correlation or variance or covariance.

DIFFICULTY: T may be very large or even infinite.
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Introduction

Consider a stochastic dynamics (X(t); t > 0) "at equilibrium ",
with law P.

Introduce a family of " perturbed dynamics " (X*(t); t > 0), with
law PA. (X € [0, 1] is the "strength” of the perturbation.
If A =0, then X = X. We care about small \’s. )

Let (A(t); t > 0)) be an additive functional. (Observable.)
Note E[A(t)] = tE[A(1)].

AIM: Compare +EAA(T)] and E[A(1)].
In particular: express the linear response dy—o+E*A(T)] as a
correlation or variance or covariance.

DIFFICULTY: T may be very large or even infinite.

We assume that: X is reversible.
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Model to start with: diffusions on a torus.

Let TY = RY/Z9 be the d-dimensional torus.
Let (Xx(t); t > 0,x € T9) be the solution of the sde:

dXy(t) = b(X«(t))dt + o (X« (t))dW:; X«(0) = x. (1)
Here (W;; t > 0) is a T9-valued Brownian motion defined on
some probability space (W, A, P).
o = (0(x); x € T9) is a smooth field of symmetric non-negative
matrices over T9; b = (b(x); x € T%) is a smooth vector field.

Linear response for stochastic dynamics



Model to start with: diffusions on a torus.

Let TY = RY/Z9 be the d-dimensional torus.
Let (Xx(t); t > 0,x € T9) be the solution of the sde:

dXy(t) = b(X«(t))dt + o (X« (t))dW:; X«(0) = x. (1)
Here (W;; t > 0) is a T9-valued Brownian motion defined on
some probability space (W, A, P).
o = (0(x); x € T9) is a smooth field of symmetric non-negative
matrices over T9; b = (b(x); x € T%) is a smooth vector field.

The increment X, (t + At) — X(t) follows a Gaussian law
N (b(X«(t))At; a(Xk(t))At)

independent of the past before time t. (a = 02.)
The stochastic process (X (t); t > 0,x € T?) is Markov with
generator

Za,k Wif(x)Vif(x) + > bi(x)V,f(x).

J
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Model to start with: diffusions on a torus.

Recall
dXi(t) = b(X(t))dt + o(Xi(t))dW:; Xi(0) = x.
We assume that

a(x) = o(x)?; b(x) = %div(a(x)) , L= %div(aV).

The normalized Lebesgue measure on T4, say m, is a reversible and
invariant probability measure.
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Model to start with: diffusions on a torus.

Recall

dX(t) = b(Xi(t))dt + o(X«(t))dW:; Xi(0) = x.
We assume that

a(x) = o(x)?; b(x) = %div(a(x)) ; L= %div(aV).

The normalized Lebesgue measure on T4, say m, is a reversible and
invariant probability measure.

Reversible means that, for all T, if x = X,(0) has distribution T,
then the forward evolution (Xx(t); 0 <t < T) and backward
evolution (X (T —t); 0 <t < T) have the same distribution on
path space. In particular Xi(0) and X (T) have the same law.
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Model to start with: diffusions on a torus.

Recall
dXi(t) = b(X(t))dt + o(Xi(t))dW:; Xi(0) = x.
We assume that
5 1 . 1 .
a(x) = o(x)7; b(x) = Ed/v(a(x)) , L= Ed/v(aV).
The normalized Lebesgue measure on T4, say m, is a reversible and
invariant probability measure.

Notation: C(R,;T9) be the set of continuous functions from R
to T9. We use the notation P, to denote the law of

(Xx(t); t > 0). Similarly for P, (if x has distribution 7). So P, is
a measure on path space. We use the notation (X(t); t > 0) for a
continuous path in C(R; T9).
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Perturbations

To define the perturbed process, let us consider a smooth vector
field V defined on T9 and a real parameter A > 0 and let
(XX(t); t > 0,x € T?) be the solution of the stochastic
differential equation:
X2(0) =x,
dX(t) = b(XP(t))dt + Ao (X} ())V(Xe (t))dt + o(Xg (t))dW .
(2)

Then (X(t); t > 0,x € T9) is Markov with generator

1
L = 5div(aV) + AoV V.
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Perturbations

To define the perturbed process, let us consider a smooth vector
field V defined on T9 and a real parameter A > 0 and let
(XX(t); t > 0,x € T?) be the solution of the stochastic
differential equation:
X2(0) =x,
dX(t) = b(XP(t))dt + Ao (X} ())V(Xe (t))dt + o(Xg (t))dW .
(2)

Then (X(t); t > 0,x € T9) is Markov with generator
a1
LY = Ed/v(aV) + AoV V.

Notation: as before P} is the law of (X)\(t); t > 0) on path space.
Also P} when we are at equilibrium.
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Additive functionals (observables)

We may consider

symmetric additive functionals e.g. A(t) = fot f(X(s)) ds,
f:T9 > R,

or

anti-symmetric additive functionals e.g. let (Z(t); t > 0) be the
lift of (X(t); t > 0) to RY. More generally

A(t) = /O g(X(s)) 0 dX(s).

g : T9 — RY a vector field.
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Additive functionals (observables)

We may consider

symmetric additive functionals e.g. A(t) = fot f(X(s)) ds,

f:T - R,

or

anti-symmetric additive functionals e.g. let (Z(t); t > 0) be the
lift of (X(t); t > 0) to RY. More generally

t
A(t) = /0 g(X(s)) 0 dX(s).
g : T9 — RY a vector field.

The words symmetric vs anti-symmetric refer to symmetry vs
anti-symmetry with respect to time reversal.

Anti-symmetric additive functionals correspond to currents in
physics.
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Additive functionals (observables)

We may consider

symmetric additive functionals e.g. A(t) = fot f(X(s)) ds,
f:T9 > R,

or

anti-symmetric additive functionals e.g. let (Z(t); t > 0) be the
lift of (X(t); t > 0) to RY. More generally

t
A(t) = /O g(X(s)) 0 dX(s).
g : T9 — RY a vector field.

Observe that all anti-symmetric additive functionals have zero
mean: for all t, Eﬂ[fotg(X(s)) odX(s)]=0.
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Additive functionals

For diffusion processes (as in Equation (1)), symmetric and
anti-symmetric additive functionals are related by

t 1 t )
/0 g(Xx(s)) o dXi(s) = m: + 5 /0 div(ag)(X«(s)) ds,

where m is the martingale

me = /0 (08)(X(s)) - dWs
under P.

Martingales are always easy to deal with. Results about
anti-symmetric additive functionals transfer to symmetric additive
functionals easily with the formula above. But ...
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Additive functionals

For diffusion processes (as in Equation (1)), symmetric and
anti-symmetric additive functionals are related by

t 1 t )
/0 g(Xx(s)) o dXi(s) = m: + 5 /0 div(ag)(X«(s)) ds,

where m is the martingale

m= | (08)(X(s)) - AWV
under P.

observe we only get symmetric additive functionals where f is of
the form
f=div(ag).

Such f's form the H_; space.
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Additive functionals

For diffusion processes (as in Equation (1)), symmetric and
anti-symmetric additive functionals are related by

t 1 t )
/O £(X.(s)) 0 dXs(5) = me+ /O div(ag)(X.(s)) ds,

where m is the martingale

me = /O (08)(X(s)) - dWs
under P.

In the rest of the talk we focus on
anti-symmetric additive functionals.
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Linear response with a fixed time horizon

Fix a time horizon T.

On the space of trajectories C([0, T]; T9), the two measures P,
and P are equivalent and the Radon-Nikodym derivative is given
by the Girsanov weight:

E[F(X(0, T])] = E[F(X([0, T]))e BTN -5 END)]

where

t T
BM=AVM$DdMN&UFM§M&@W$-

0
So

D70 EMA(T)] = ZE[A(T)B(T)].
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Linear response with a fixed time horizon

Fix a time horizon T.

On the space of trajectories C([0, T]; T%), the two measures P,
and P are equivalent and the Radon-Nikodym derivative is given
by the Girsanov weight:

E[FOXX([0, TI))] = E[F(X.([0, T]))e BT -3 (ENT)]
where
t T
- s))- ; = x\S 2 S.
B(t) —/O V(X«(s)) - dWs; (B)(T) /o V(X(s)))? d

So

Or-o T ENA(T)] = E-[A(T)B(T)] .

Indeed a covariance.
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Linear response with a fixed time horizon

Fix a time horizon T.

On the space of trajectories C([0, T]; T9), the two measures P,
and P are equivalent and the Radon-Nikodym derivative is given
by the Girsanov weight:

E[F(X(0, T])] = E[F(X([0, T]))e BTN -5 END)]

where

t T
BM=AVM$DdMN&UFM§M&@W$-

0
So

D70 EMA(T)] = ZE[A(T)B(T)].

Note at this point, we do not need the anti-symmetry of A. Not
even the fact that we are at equilibrium.
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When T — +00

We first need to understand the T — 400 limit in the formula:
1
Or= 0 B A(T)] = —Ex[A(T)B(T)] .

Central limit Theorem:

Assume A(t) = [ g(X(s)) o dX(s) with [ g2 dr < cc i.e.
E,[A(1)?] < 0o. When T tends to 400, then the law of the vector
—L_(A(T), B(T)) under P converges to a Gaussian law with a

T . -
certain covariance S and

ZE.[A(T)B(T)] = S.

The CLT only holds in this form if 7 is ergodic. Otherwise we get
a mixture of Gaussian laws but the existence of S still holds.
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When T — +00

We first need to understand the T — 400 limit in the formula:
1
Or= 0 B A(T)] = —Ex[A(T)B(T)] .

Central limit Theorem:

Assume A(t) = [; g(X(s)) o dX(s) with [g2dm < o i.e.
E,[A(1)?] < 00. When T tends to 400, then the law of the vector
#(A(T), B(T)) under P, converges to a Gaussian law with a
certain covariance S and

1

FE-[A(T)B(T)] = §.

Can we exchange the two limits?

||msu —IE;\FAT — 8| =x.007
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LR scaling

J. Lebowitz, H. Rost '94.

The limit in the scaling A>T = 1 still exists:

L oa L AB(T)—22(B)(T)
SFENA(T)) = 1B [A(T) e85 (B1(7)]
1 L B(T)— 54 (B)(T)
— B [——A(T)ev" a7
77AT)e ]

— E[AeB~2EIB%]] = F[AB] =

where (A, B) is the Gaussian vector given by the C.L.T. with
covariance E[AB] =

Once again the CLT only holds when 7 is ergodic. Otherwise we
have a mixture of Gaussian laws and the conclusion still holds.
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T =+o00?

Conclusions so far:
Linear response holds for fixed times.

Linear response holds for larger times in the Lebowitz-Rost scaling
for observables that satisfy the CLT.

What about infinite times?
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Reversible diffusions in a random environment

On RY.

dZ,(t) = b*(Z(1))dt + 0“(Ze(t))dWs ; Zx(0) =x.  (3)

w . w ) _1 . w . w_]- C W
a“(x) = 0*(x)?; b (X)-Ed/v(a (x); £¥ = id/v(a V).

Now the coefficients (¢(x); x € RY) are random i.e. depend on

some w € € with law Q on Q.
We assume: Q is stationary and ergodic (w.r.t. translations in

RY).
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Reversible diffusions in a random environment

On RY.

dZ.(t) = b*(Z(t))dt + 0“(Z(t))dW;; Z(0) = x.  (3)

Perturbation

dZ)(t) = b2 (Z2(t))dt+MAa® (Z)(£))V2(Z) () dt+0“ (Z2(t))dW, .

(4)
VY(x) =0“(x) - e1.

(Constant force in direction ej.)
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Einstein relation

The C.L.T. holds for the process (Z.(t); t > 0):
1

u-Xv= lim —(E[u-ZX(T)v-ZX(T)]—E[u-ZX(T)] E[v-ZX(T)]) .

T—+oo T
Y is the asymptotic covariance matrix of Z.

() = i ! ZNT)
= |lim —=
To+oo T X

(Does the limit exist?)

8,\;05()\) = Zel .

Einstein relation.
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Einstein relation

The C.L.T. holds for the process (Z.(t); t > 0):

uXv=_lim %(E[u-zx(r)v-zx(T)]—E[u-ZX(T)] Elv-Z(T)]).

T—4o00

Y is the asymptotic covariance matrix of Z.

)= lim =

ZMT
T—+oc0 T X( )

(Does the limit exist?)

(A:oﬁ(/\) = Zel .
Einstein relation.

C.L.T. was proved in the 80's (Kipnis-Varadhan,
DeMasi-Ferrari-Goldstein-Wick ...). Since Q is ergodic, X is
deterministic.

Linear response for stochastic dynamics



Einstein relation

The C.L.T. holds for the process (Z«(t); t > 0):

uYv=lim l(E[u-ZX(T)v-ZX(T)]—E[U-ZX(T)] E[V.ZX(T)]) .

T—4o00

Y is the asymptotic covariance matrix of Z.

. 1
(0= i 727)

(Does the limit exist?)
8,\:0€(A) = Zel .
Einstein relation.

The existence of the speed ¢()) is non trivial (Off-equilibrium
problem.) and not known in general.
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Einstein relation

The C.L.T. holds for the process (Z.(t); t > 0):

. 1
wTy = lim  Z(ElwZdT)v Z{ T~ Elu Z{ )] €l Z(TY)

Y is the asymptotic covariance matrix of Z.

. 1
)=l F2(T)

(Does the limit exist?)

8)\:05()\) = Zel .
Einstein relation.

This model is infinite dimensional. Very non-hyperbolic.
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Einstein relation: results

We establish the Einstein relation
O=0l(N) = Xe; .

under two extra assumptions:

- 0“ is uniformly elliptic (bounded from below and above),

- 0¥ has finite range of correlation (values of 0“(x) and o“(y) are
independent when d(x, y) > R for some fixed R.).

(Ref Gantert-Mathieu-Piatnitski 2012.)
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Einstein relation: results

We establish the Einstein relation
8A:0£(/\) = Zel .

under two extra assumptions:

- 0“ is uniformly elliptic (bounded from below and above),

- 0 has finite range of correlation (values of o (x) and o“(y) are
independent when d(x,y) > R for some fixed R.).

(Ref Gantert-Mathieu-Piatnitski 2012.)

The existence of the speed ¢(\) was obtained by Shen in 2003.
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Einstein relation: results

We establish the Einstein relation
O=0l(N) = Xe; .

under two extra assumptions:

- 0“ is uniformly elliptic (bounded from below and above),

- 0¥ has finite range of correlation (values of 0“(x) and o“(y) are
independent when d(x, y) > R for some fixed R.).

(Ref Gantert-Mathieu-Piatnitski 2012.)

Key step of the proof is: show the perturbed diffusion reaches
equilibrium by time T = 1/)?; then compare with LR scaling.
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Einstein relation: results

We establish the Einstein relation
8)\:0£()\) = Zel .

under two extra assumptions:

- 0¥ is uniformly elliptic (bounded from below and above),

- 0“ has finite range of correlation (values of 0“(x) and o“(y) are
independent when d(x, y) > R for some fixed R.).

(Ref Gantert-Mathieu-Piatnitski 2012.)

Key step of the proof is: show the perturbed diffusion reaches
equilibrium by time T = 1/)?; then compare with LR scaling.

This is an example where, the smallest the perturbation, the
largest the equilibrium time. See later for a more elementary finite
dimensional example.

Linear response for stochastic dynamics



Continuity of the variance

Let

GTO) = lim (E[w 2T ZN(T)-Elw ZXT) El-ZX(T))

be the asymptotic covariance of the perturbed diffusion Z*.

We also establish the Continuity of variance:

lim £(\) = x.

(Ref: Mathieu-Piatnitski 2018.)

The continuity of variance is stronger than linear response.
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Continuity of the variance

Let

GTO) = lim (E[w 2T ZN(T)-Elw ZXT) El-ZX(T))

be the asymptotic covariance of the perturbed diffusion Z*.

We also establish the Continuity of variance:

lim £(\) = x.

(Ref: Mathieu-Piatnitski 2018.)
The continuity of variance is stronger than linear response.

Many questions (and few results) to extend to time-dependent
perturbations.
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Diffusions on a torus

Back to diffusions on a torus:

dXx(t) = b(X(t))dt + o(Xu(£))dWs ; Xx(0) = x.

dX2(t) = b(X2(t))dt + Aa(X2 () V(X2 (1)) dt + o (X2 (t))dW; .
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Diffusions on a torus

Back to diffusions on a torus:

dXx(t) = b(X(t))dt + o(Xu(£))dWs ; Xx(0) = x.

dX(t) = b(X(t))dt + Ao (X2 (£)) V(X (1)) dt + o (X2 (t))dW, .
Questions (in increasing order of difficulty)

1. Continuity of 'steady state: is +EX[A(T)] uniformly close to
TE[A(T)] = E<[A(1)]?

2. Linear response: compute Oy—o+EXA(T)] for large T7

3. Continuity of variance: what can we say about the variance of
A(T) under P} as T — +o0 and for small \?
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Diffusions on a torus

Back to diffusions on a torus:

dXx(t) = b(X(t))dt + o(Xu(£))dWs ; Xx(0) = x.

dX(t) = b(X(t))dt + Ao (X2 (£)) V(X (1)) dt + o (X2 (t))dW, .
Questions (in increasing order of difficulty)

1. Continuity of 'steady state: is +EX[A(T)] uniformly close to
TE[A(T)] = E<[A(1)]?

2. Linear response: compute Oy—o+EXA(T)] for large T7

3. Continuity of variance: what can we say about the variance of
A(T) under P} as T — +o0 and for small \?

Below partial answers to 1.
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A degenerate example

On the interval [0, 1].
dX(t) = b(Xi(t))dt + o(X«(t))dW:; X«(0) = x.

1
a:o2; bzidiva.

Choose a(x) = x“ for small positive x and o > 2 and a bounded
from below elsewhere.
Choose: V(x) = —1 for small positive x.

dX2(t) = S(XX(0)° e = AXX ()% dt + (X2(£)) 2 W

@ . —
Note x2 is larger than x®~! for small x.
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A degenerate example

On the interval [0, 1].

dXx(t) = b(X(t))dt + o(Xx(£))dWs ; Xx(0) = x.

1
a:a2; bzidiva.

Choose a(x) = x for small positive x and & > 2 and a bounded
from below elsewhere.
Choose: V(x) = —1 for small positive x.

dX2(t) = S (XX(0)"dt = AXX(D) % dt + (X2(£) 2 W

Then, for all positive A, for almost all trajectories,
XNT)—0.

For any A > 0, the steady state is Jg!



Lipschitz bounds

Recall A(t) = fo ) o dX(s).
THEOREM Choose g continuous.

272

EMA(T)] < 4XT(||V 0 gllso -
AT < AT (Ve + 1) - ]
In particular
1
limsup — Imsup—}E (TN <4Vllo - glloo -
A=0 A Totoo

The result says the steady state is always Lipschitz continuous: not
as a measure (See example before.) but as a distribution on
anti-symmetric additive functionals or, equivalently, on H_;.
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Lipschitz bounds

Recall A(t) = fo ) o dX(s).
THEOREM Choose g continuous.

277
EX[A(T)] < 4AT (V] + )\ﬁ)HU'gHoo~

In particular

1 1
limsup ~ limsup — }E)‘[A )H <4||V|sollo - glloo -
A—0 T—+o00

Proof is based on forward-backward martingale decomposition for
A and concentration inequalities (Large deviations).
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Application to diffusions in a random environment

Recall
dZ)(t) = b (Z2(t))dt+Aa® (Z)(£)) V2 (Z) () dt+0“ (Z2(t))dW, .

V¥(x) =0“(x) - er.

Coefficients (0¥ (x); x € RY) are random stationary.

Let 1
= _lim —ZXT
6(/\) T*LTOO T X( )
(if it exists.)
Then

16(N)] < 4Mlo - e -
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Optimistic Lipschitz bounds

Recall A(t fo ) o dX(s).

Choose g continuous.

limsup — I|m sup — }EA[A )H < 4| V|sollo - glloo -
A—0 T—+o00
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Optimistic Lipschitz bounds

Recall A(t) = [; g( ) o dX(s).

Choose g continuous.

1 1
limsup — lim sup —}EQ[A( T)H < 4| V|sollo - glloo -
A50 A Togoo T

The bound also holds for time-dependent parameters o or
perturbation V.

THEOREM Assume V depends on time and that
li =0.
lim sup [Vr(x)]lo0
Then

1
lim —EMA(T) =0.
plim T EIAT] =0
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End

Concluding remark:

Martingale techniques always useful for stochastic dynamics:
Girsanov transforms, CLT's, deviation inequalities ... and flexible
enough to adapt to time-dependent models.

End of the talk.
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