A PARAMETER ASIP FOR THE QUADRATIC FAMILY
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ABSTRACT. Consider the quadratic family T, (z) = az(1l — z), for x €
[0,1] and mixing Collet—Eckmann (CE) parameters a € (2,4). For
bounded ¢, set ¢o := ¢ — [ pdpa, with pa the unique acim of Ty, and
put (ca(9))® = [ @adpa + 23,20 [ Pa(Pa 0 Ti) dja. For any mixing
Misiurewicz parameter a., we find a positive measure set . of mixing
CE parameters, containing a. as a Lebesgue density point, such that
for any Holder ¢ with o4, () # 0, there exists €, > 0 such that, for
normalised Lebesgue measure on . N [a« — €4, ax + €,], the functions
&ila) = @a(TITH(1/2))/0a(y) satisfy an almost sure invariance principle
(ASIP) for any error exponent v > 2/5. (In particular, the Birkhoff sums
satisfy this ASIP.) Our argument goes along the lines of Schnellmann’s
proof for piecewise expanding maps. We need to introduce a variant
of Benedicks—Carleson parameter exclusion and to exploit fractional
response and uniform exponential decay of correlations from [BBS].
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1. INTRODUCTION

1.1. Background and Motivation. Let (€., m,, F.) be a probability space.
We say that a sequence of measurable functions &;: 2, — R, ¢ > 1 satisfies
the almost sure invariance principle (ASIP) with error exponent v < 1/2
if there exist a probability space (Qu, my, Fy) supporting a (centered)
one-dimensional Brownian motion W and a sequence of measurable functions
n;: Qw — R, ¢ > 1, such that

i) The random variables {¢; };>1 and {»; };>1 have the same! distribution.

ii) Almost surely, ‘W(n) -> ni‘ =0(n") as n — 0.

Since a Brownian motion at integer times coincides with a sum of indepen-
dent identically distributed (i.i.d.) Gaussian variables, the above definition
can also be formulated as an almost sure approximation, with error o(n?),
by a sum of i.i.d. Gaussian variables.

It is a classical result (see [PS]) that if the {;} satisfies the ASIP then it
satisfies the law of the iterated logarithm (LIL), the central limit theorem
(CLT) and the functional CLT: Letting 02 > 0 be the variance of the
Brownian motion W (the expectation is zero by assumption), and denoting
Lebesgue measure by m, the LIL says that

lim sup for m.-almost every a € (.,

1 n
n—soo v/2nloglogn ;&(a) -7
and the CLT (for the functional CLT, see [DLS, Lemma 5.1]) says that

1 <« 1 Y 2
li . O, | —— i(a) < - =525 Yy eR.
g ({oeo ZmYsm o) - g [ e e

We consider I = [0, 1] and the quadratic family
To(x) =azx(1—2x), z€l, ac(2,4].

Denote by ¢ = 1/2 the critical point of T}, and set ¢j(a) = T4 (c) for j > 1.

If liminf,, oo n ™1 1og 0,(T)(T,(c)) > 0, we say that a is a Collet—Eck-
mann (CE) parameter. If a is CE, then T, admits a unique absolutely
continuous invariant probability measure (acim) p, = hgdm. Our goal is to
find a positive Lebesgue measure set {2, of CE parameters with a Lebesgue
density point a, € 2, such that for any Holder continuous function ¢: I — R
with o4, (¢) # 0 (see (1.2)), there exists e, > 0 such that the ASIP holds for
m, the normalised Lebesgue measure on €2, N [a. — €y, ax + €, and

fj(a) = ‘Pa(chrl(a)) ) J=20, acQn [CL* — €p, Ox + Ego] ,
1By definition of the distribution of discrete-time real-valued stochastic processes, this

means that for any n > 1 and any {y; € R| 1 < i < n}, the joint probability that & < y;
for all 1 < i < n coincides with the joint probability that n; < y; for all 1 <i < n.
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where ¢, is a suitable normalisation of ¢ (see (1.6)). We follow the approach
of Schnellmann [Sch], who developed this program for transversal families of
piecewise expanding maps Ty, for which €2, can be taken to be an interval.

Our main motivation is to extend to the quadratic family the method
developed by de Lima—Smania [DLS] in the setting of piecewise expanding
maps, in order to study linear and fractional response. (This method requires
a functional central limit theorem, see [DLS, Lemma 5.1].)

We say that T, is mixing if it is topologically mixing on

K(a) := [ea(a), c1(a)]

It will be convenient below to restrict to mixing maps 7. Tiozzo recently
showed [Ti, Cor 3.15] (his result holds in fact for more general unimodal
maps) that 7}, is (strongly) mixing for its unique measure of maximal entropy
(MME) if its topological entropy is greater than log(2)/2. If a is a CE
parameter with strongly mixing MME, then T, is topologically mixing on
K (a) since the measure of maximal entropy has? full support there. Since
the topological entropy of T} is equal to log 2, and the topological entropy
of T, is nondecreasing and continuous (in fact Holder continuous [Gu]) in
a, there exists apix < 4 such that for all a € (amix, 4] N CE, the map Ty, is
topologically mixing on K (a), and p, is strongly mixing, with support K (a).

Melbourne and Nicol showed [MN] the ASIP in the phase space x € K (a),
setting & = T!(x) for a fixed CE map T,, using an induced uniformly
expanding system (then [PS, Section 7] provides an ASIP which projects to
the ASIP for the original CE map). However, to the best of our knowledge,
the ASIP in the parameter a is still open.

In the parameter space, typicality (the law of large numbers, LLN) and
the LIL are known: Avila-Moreira [AM2], showed that® for Lebesgue almost
every CE map T, the critical point is typical for its unique absolutely
continuous invariant measure p, = hodm:

n

.1 ! 0
(1.1) Ji)r{:on;cp(cl(a)) :/0 odpg , Vo e CV.

For Holder continuous ¢: I — R and a topological mixing CE parameter a,
define o, (¢) > 0 by

(12) ()= | 1<90 -/ wdﬂa)Qdua
(1.3) +QZ/01<@—/cpdua> (cp—/apdua> o TV dpig

where the sum (1.3) is finite because topological mixing (i.e., the fact that
the map is nonrenormalisable) implies [KN] exponential mixing for the acim
and Holder continuous observables.

2Indeed, since T, has no homtervals if a« € C'E, it is conjugated to its piecewise linear
model F, by a homeomorphism which maps the MME of F, to the MME of T,, and the
MME of F, is absolutely continuous with a positive density on [FZ(c), Fu(c)].

3Benedicks and Carleson established typicality in [BC1] for the Cantor set of CE
parameters considered there.



4 MAGNUS ASPENBERG(), VIVIANE BALADI(®):(3), AND TOMAS PERSSON()

In a work in progress, Gao and Shen [GS2]| show that, for Lebesgue almost
every a in the set of mixing CE parameters, for every Holder observable ¢,
either o,(¢) = 0 or the critical point ¢ of T, satisfies the LIL for ¢, i.e.,

1 - ,
li _— T - dpg | = 04 :
im sup nglogn;@( 2 () /so 7 ) oa(p)

1.2. Statement of the ASIP (Theorem 1.1). To state our main result,
we need more notation and definitions. For j > 0 and a € (amix, 4], set

zj(a) = cjyi(a) =TI (e),  Th(2) = 0Talz),  2j(a) = daj(a).
The family T, is transversal at a. if (see [Tsl]) there exists C' > 1 such that

1 2 (ax
(1.4) —< ‘]J()
¢ T (ea(an)
By [Ts2, Theorem 3], all CE parameters are transversal. We refer to [Tsl,
(NV;)] for an equivalent condition expressed in terms of the postcritical orbit.

<o vzl

The map Ty, is (Hg, kq)-polynomially recurrent, for k, > 1 and H, > 1, if

(1.5) jwj—1(a) — | = |T{(c) —c| > =, Vj>Ha.

e
If inf;>q [T (c) —c| > 0 then a is called a Misiurewicz parameter. Misiurewicz
parameters are CE and thus transversal. Avila and Moreira [AM1] showed
that, for any xo > 1, the set of parameters a which are (H,, xg)-polynomially
recurrent for some H, has full measure in the set of CE parameters. The set
of Misiurewicz parameters a is uncountable (it has full Hausdorff dimension
[Za, Thm. 1.4] but zero Lebesgue measure).

Finally, we introduce the normalisation ¢,: Let ¢ be bounded such that
oa(p) # 0 for a mixing CE parameter a. Then the function

(16) o) 1= (o) = [ i)

is well defined and satisfies
(1.7) oalpa) =1 and /goa dug =0.

Theorem 1.1 (Main Theorem: ASIP). For any Misiurewicz parameter
ay € (amix,4) there exists a positive Lebesgue measure set Q. of mizing
polynomially recurrent parameters, containing as as a Lebesgue density point,
such that for any Hoélder continuous function ¢ with o4, (@) # 0, there exists*
€, > 0 such that the functions

(1.8) {n(a) == pa(zn(a)) = QOa(TC?Jrl(C)) ) n>1,

satisfy the ASIP for normalised Lebesque measure m, on 2, N[a.— €, Ox —&—e@]
and all error exponents v > 2/5.

4The choice of €, ensures in particular that o4(p) # 0 if 04, () # 0.
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The value a, = 4 is not covered by our arguments for technical reasons,
since ¢; and co then lie on the boundary of I (see e.g. Footnote 29). It is
possible (but a bit cumbersome) to handle (a one-sided neighbourhood of)
this value by a change of coordinates as in [Tsl, Lemma 2.1].

We expect that the methods® of this paper can be extended to the case
when the “root” a, is mixing, but only Collet—-Eckmann and polynomially
recurrent (for large enough ko > 1), instead of Misiurewicz. We restrict
here to Misiurewicz parameters a., for the sake of simplicity. What is most
desirable in view of our original motivation to extend the analysis of [DLS],
is to obtain a “fatter” Cantor set {2, (as opposed to a fatter set of root points
ay): Indeed, this extension will probably require the ASIP on a set Q for
which there exist § > 1 and a full measure subset ﬁl C Q such that

(1.9) lg% m([a—e,ec;—i—e]\(l)

(See [BS2, (5), Prop. F], note that [BS2, Lemma E] even uses § < 2 close
to 2.) Property (1.9) is known for all 8 < 2 for the sets Q1 C Q studied® by
Tsujii [Ts1]. Although it is not stated in the literature, the Cantor set Qpc
from the (exponential) Benedicks—Carleson construction at a Misiurewicz
point a, should” satisfy (1.9) at a = a, for some 3 > 1. For our Cantor
set Q, C Qpc, we expect that for any x > 1, taking kg large enough in
Proposition 2.2 the factor €® in (1.9) must be replaced by €|loge|™* (see
(2.20)), which does not seem good enough. Attaining the goal of our original
motivation may thus require establishing the ASIP on a Cantor set having
larger density, and thus weakening the polynomial lower recurrence in the
construction (see comments in the next paragraph). We view this as the
most desirable improvement of our main theorem.

:0,Va€§1.

To clarify the role of €., it is useful to compare Schnellmann’s proof
with ours. In [Sch], Schnellmann studies suitable transversal one-parameter
families of piecewise expanding interval maps and obtains a parameter ASIP
on a set 2, which is just an interval [0, €?] of parameters. Indeed, existence
of an exponentially mixing acim enjoying fractional response (with uniform
bounds) holds in an entire interval [0, €¥] in his setting [Sch, Prop. 4.3,
Lemmad4.5]. So [0, €] is the baseline parameter space for his analysis. Some
parameters in this baseline cause difficulties (“exceptionally small sets”),
but Schnellmann can get away with just ignoring them (taking advantage
of the fact that their total measure is controlled [Sch, (III), Theorem 3.2,
Lemma 4.1, proof of Lemmas 6.1-6.2]) instead of excluding them from the
baseline. Our situation is different, since we need to exclude parameters
which do not have an acim or for which exponential mixing or fractional

For example, [A, Lemma 8.1] would replace [DMS, Lemma V.6.5] in the proof of
Proposition 2.2.

6Beware that Tsujii’s result cannot be used immediately. In particular, the main
argument in the construction of the parameter set in Theorem 1 of Pre-threshold fractional
susceptibility function: holomorphy and response formula, arxiv.org/2203.07942, is flawed.

"See (2.18), noting that |wo| = 2¢, and taking j > No for Ny = O|loge| (as is the case
in the proof of Proposition 2.2).
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response (with uniform bounds) does not hold: Our baseline set is a Cantor
set, and the best we can do is to make it as fat as possible.

The polynomial recurrence (1.5) in our parameter exclusion (Proposi-
tion 2.2), which causes the “thinness” of €, is needed® to apply the results
of [BBS] in Sections 2.4 and 2.5 (Propositions 2.5 and 2.6 on uniform decor-
relation and fractional response, and its consequence, Lemma 2.8). Due to
this we already ezclude the parameters which could have exceptionally small
image and we do not need to ignore them (Lemma 2.3, compare also the
proof of [Sch, Lemma 6.1] with (4.13) below). In addition, we get an easy
proof of the local distortion estimate (2.31). If the required consequences of
[BBS] could be extended to sets of parameters which enjoy only exponential
recurrence bounds, then we could use the (fatter) Benedicks-Carleson Cantor
set Q‘gc as a baseline instead of €, (if necessary, the Benedicks—Carleson
technique could be replaced by ideas from Tsujii [Ts1], Avila—Moreira [AM]]
or Gao—Shen [GS1]). Next, one could try to ignore the parameters with
exceptionally small images in Lemma 2.3. For (2.31), see also Footnote 24.

We also note for the record here that the characteristic function 15 of a

fat enough Cantor set  belongs to a Sobolev space HJ(I) with s > 0 (see
[HM, Props 4.9 and 4.10]). Thus, working with a Cantor set of larger density
may simplify some of our arguments (in the proof of Proposition 3.2, e.g.).

Finally, the results of this paper probably extend to more general families
of smooth unimodal maps. In the present “proof of concept” work, we choose
to restrict to the quadratic family.

1.3. Structure of the Text. Schnellmann pointed out [Sch, p. 370] that
the “Markov partitions” given by the intervals in the celebrated Benedicks—
Carleson [BC1, BC2] parameter exclusion construction would be the key to
extend his result to nonuniformly expanding interval maps.

Our paper carries out this plan and is organised as follows: After recalling
basic facts in Section 2.1, we adapt in Section 2.2 the Benedicks and Car-
leson procedure to construct, in a neighbourhood of a topologically mixing
Misiurewicz point a,, a sequence €2,, C 2,1 where €2, is a finite union of
intervals in P,. At each step, some intervals in P, are partitioned and the
intervals which do not satisfy a time-n polynomial recurrence assumption are
excluded. The remaining Cantor set ,(a.) = N, 2, is a positive Lebesgue
measure set of parameters satisfying the Collet—Eckmann property, polyno-
mial returns and distortion control, with uniform constants. (Our distortion
bound (2.31) is new.) In addition, the construction ensures that there are
no “exceptionally small” sets (Lemma 2.3). Applying results from [BBS],
this ensures uniform exponential decay of correlations (Proposition 2.5) and
fractional response (Proposition 2.6), from which we obtain regularity of the
map a +— o, (Lemma 2.8).

Sections 3 and 4 contain the proof of the ASIP along the lines of [Sch]:
First approximate the Birkhoff sum by a sum of blocks of polynomial size
(Sections 4.1 and 4.2), then (Section 4.3) approximate these blocks by a
martingale difference sequence Y; and apply Skorokhod’s representation

8See also (4.7) and (4.22), which may cause a different error exponent.
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theorem linking a martingale with a Brownian motion (see [PS, Section 3]).
The usual application of the approach of [PS, Chapter 7] in dynamics uses a
strong independence condition (see [PS, 7.1.2]) which we do not have (the
&’s are not iterations of a fixed map and there is no? underlying invariant
measure). We replace this strong independence condition by uniformity of
constants in the exponential decay of correlations (given by [BBS]) which we
translate into properties for the & by switching from parameter to phase space
(see Proposition 3.2), giving estimates similar to those in [PS, Section 3].

For w € (0,1), we shall denote by C® the set of w-Holder continuous
functions ¢: I — R, putting ||¢|lz = sup|¢| + Hz(p), with Hs(p) the
smallest Hg such that |¢(x) — ¢(y)| < He|z — y|® for all z, y in I. The
letter C' is used throughout to represent a (large) uniform constant, which
may vary from place to place.

2. BOUNDS FOR THE QUADRATIC FAMILY. THE CANTOR SET Q. (a.)

2.1. Basic Properties. Clearly, the maps
aw Th(z) = 0, Ty(x) = a(l — 21), x> 0T, (x) = z(1 — x)
are Lipschitz continuous uniformly in x € I and a € (amix, 4], and in addition

(2.1) sup|Ti(z)] < A:=4, Va € (amix, 4] -
zel

Each T, has two monotonicity intervals, with partition points 0, ¢ = 1/2,
and 1. The following easy lemma replaces'® [Sch, (30)]:

Lemma 2.1. There exists C < oo such that, for any a1, a2 € (2,4], we have
(2.2) 1o (x) — T (x)| < CA"|ay — ag, Veel, Vn>1.

Proof. Clearly, [Ty, (x) — Tay(2)| < a1 — ag|. For n > 2, using the definition
(2.1) of A, and setting C' = > 22 A7/, we get
7o, () — Tg, ()]
< Ty (Toy7 () — T (T3 ()| + | Tap (Tay () — Tao (Thy (@)
< a1 — as| + A|T(Z*1($) — T;L;l(:c)|
<lar —ag|(L+ A) + A*| T 2(z) — Tot % (2)] < ...
n—1

§|a1—a2]ZAj§CA"|a1—a2]. O
7=0

9See the example (see [Ka), p. 646) discussed in [Sch]. Also, as pointed out by [Sch], it
is not clear how to apply the spectral techniques of [Go] in our setting.

0We do not need as in [Sch, (30)] that z has the same combinatorics under T, and Th,
up to the (n — 1)th iteration. We thus do not need any analogue of [Sch, Sublemma 5.4].
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2.2. A Polynomial Benedicks—Carleson Construction (2. (a.), Py).
For each j > 0, the function z;(a) = T2 (¢) is a map from the parameter
space (amix, 4] to the phase space I = [0, 1], with z;(a) € K(a) for all a.
The transversality condition (1.4) says that the derivatives of z; and T} are
comparable at a,, so that statistical properties (such as the ASIP) can be
transferred from the maps x — T (z) to the maps a — z;(a). To make this
precise, we next construct a sequence of partitions in the parameter space.
Our starting point is the following variant of the Benedicks and Carleson
Cantor set!! Qpc = Qpc(as) (see [BC1, BC2]) associated to a Misiurewicz
parameter a, (which is automatically transversal):

Proposition 2.2 (The Cantor set Q, = Q. (ax, ko)). Let ax € (amix,4] be a
Misiurewicz parameter. There exist A\cg € (1,A) and Cy € (0,1) such that,
for any di € (0,Colog A\cr/4) and do > 0, there exists € > 0 such that, for
any ko > 1/d1, for all large enough Ny > 1 there exists a sequence P; of
finite sets of pairwise disjoint subintervals of

wo = [ax — €, ax + € N (amix, 4],
such that Py =Py = ... = Pn, and, setting
Qy = Qu(as, ko) == ﬂ Qj, with Q= U w,
7>No weP;

we have ;41 C Q; for j > Ny, and'?
(23) Vji>1, YweP;, YO<l<j, T € Py suchthatw Cuw',
(2.4) |x;~(a)\>0, Tt (c) —¢| >0, Vacw, YwePj, Vji>0,

and there exists'3> C' < oo such that, for all j > Ny and w € Pj,

25)  [(TY(Ta(0)] = Mo VNo<n<j, Vacw,
1 x) (a)
(2.6) g‘” <C, VNo<n<j, Va€cw,
¢ [(T3)(Ta(c))
@27) (6] < OAghlaa(@)], VNo<n<j, VoCw,
and, moreover,
(2.8) 1T (e) —¢| > n™"0, VNo<n<j, Vaecw.
Finally, we have that a, € ), is a Lebesque density point of ., with
[ee]
(29) (%] > (1—do-e))Q 1],  Vi>No, where ;= n=hmo,
n=j

and we have the more precise (semi-local) bound

(210) > |w\ (N Q)| <do-eeplw'|, Vo' € Py, V>0 >Ny.

w€ePy
wCw’

Hgee (2.17) for the construction of Qpc.
12The first bound of (2.4) implies that a — z;(a) = T4+ (¢) is monotone on w € P;.
I3Note that (2.6) replaces [Sch, Lemma 2.4].
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See Lemma 2.3 below regarding the absence of exceptionally small sets
and Section 2.3 for a Holder distortion property refining (2.16).

Clearly, (2.8) means that any a € €, is (No, ko)-polynomially recurrent.

The bound (2.9) implies that the Cantor set {2, has positive Lebesgue
measure as soon as dj - kg > 1 (and Ny is large enough). Proposition 2.2
holds for such kg, but we will need the stronger condition d; - ko > 11/3 to
use (2.9) in the proof of Proposition 3.2 (and d; - k9 > 9/5 for Lemma 4.2).

The local bound (2.10) is used in the proof of Lemma 4.1.

Proof of Proposition 2.2. Let rog > 2 be a large integer (to be chosen later,
with € — 0 as rq increases). For r > rg, set I, = I, U I, where

It =lcte " Hete™), I- =(c—e"c—e " Y, U =(c—e ", ct+e),

and cover each I,fc by r? pairwise disjoint intervals I fg of equal size, each I fg
containing its boundary point closest to ¢. Let'* Sgc > apc > 0 where

e "BC < TR n > Ny,

for Ny a large integer to be chosen later.

For a € (amix, 4], v > 1, and r > rg such that T”(c) € I, the binding time
p(a) = p(r,a,v) of U, with T (c) is the maximal p € Z4 U {oo} such that

|TY (z) — I ()| < e 9PBC | Vi<j<p, Vrel.

The first free return time vi(a) of a € (amix,4] is the smallest integer
j > 1 for which T¢(c) € U,,. For an interval w C (amix,4], the first
free return time vi(w) is the smallest integer j > 1 for which there exists
a € w with TZ(c) € Uy,. If there exists 7 = r(w) such that x,,_1(w) C I,
(recall that T (¢) = z,,—1(a)), we define the first binding time of w by
p1(w) = mingey, p(r, a,v1(w)). For i > 2, define inductively the ith free return
time of (suitable) w to be the largest integer v;(w) > v;—1(w) + pi—1(w) + 1
such that

T/ (c)NU,, =0, Vi1 (w) + pic1(w) +1 < j <y(w), Ya €w,
and, for r(w) such that x,, ,_1(w) C I, set the ith binding time of w to be

pi(w) = mingey, p(r, a, vi—1(w)) .

(Similarly, define inductively for i > 2 and a such that T, ~'(c) € I, the
pointwise binding times p;(a) and free returns v;(a).) The iterates between
vi(w) and v;(w) + pi(w) form the ith bound period of w, those between
Vi—1(w) + pi—1(w) + 1 and v;(w) — 1 form its ith free period. Finally, if there
exist a € w and j > vy (w) such that T7(c) € U,,, we say that j is a return
time of w. (Return times either are free returns v;(w) or they occur during
the bound period.)

Note that for any fixed e, setting wg = [ax — €, ax + €], there exists N, such
that xn. (wp) contains a neighbourhood of ¢ (indeed, by transversality, for
any a € wp \ {ax«}, there exists N(a) such that Tg(a)ﬂ(c) and Tév(a)ﬂ(c) lie
on different sides of ¢). In particular, v;(wp) < co. Similarly, all v;(wp) and
pi(wo) are finite.

4The constant apc is usually called «, but we shall need the letter o for another
purpose in (2.30).
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Let W,, be a neighbourhood of ¢ disjoint from {7}’ (¢) | n > 1}. From
now on, we only consider 7y large enough such that U,,_1 C W,,. Set
Wiy =Wa, Nle+e 1] and W, . = W,, N[0,c—e"]. We claim that,
for any fixed large ro, we have that z,, ()1 (wo) contains®® Wit o O Woo o
for all small enough e. Indeed, 7, (,,)—1(wo) is an interval intersecting Uy,

and ,, (e)—1(wo) contains T (c) & W,.

For small € > 0 (to be chosen depending on rg), the sequence P; can now
be defined!® inductively: Start with the single interval Py = P; = ... =
Pn, = {wo}, for € small enough such that v1(wo) > No (note that v (wo)
increases if rg increases or € decreases).

For j > Ny, each w € P;_; is partitioned into finitely many (possibly
just one) intervals, at least one of which will be included into an auxiliary
partition P;, as follows:

If j is not a free return'” time of w, we include w in 77]’~. If j is a free
return time of w but x;_1(w) does not contain an interval I, :e (we call this
an inessential (free) return), we also include w in P;.

Otherwise, j is a free return time of w such that z;_;(w) contains at least
one interval I fg. We call this an essential (free) return. In that case, we
decompose xj_1(w) into the following intervals:

zj—1(w) \ Uy, , {zj—1(w) ﬂffg |r>r9,1 <0< 7“2}.

If 2;_1(w) \ Uy, # 0, but any of the (at most two) connected components of
zj_1(w) \ Uy, has size less than e~ 70(1 — 1/e)rg? = \I;'(EM\, we join it to its
neighbour z;_1(w) N Ii,é = Ii,f‘
has size larger than S := 4/|U,,|, we subdivide it into pairwise disjoint
intervals of lengths between S/2 and S. If x;_1(w) N Ifé # 0, but Ij’[g is

not contained in x;_1(w) (this can happen for at most two intervals I fe),

If a connected component of x;_1(w) \ Uy,

we join xj_1(w) N Ifg to its neighbour z;_1(w) N If/’e, = Ij,t’e,. Denote by
{@p¢ | r>ro— 1} the partition of z;_1(w) thus obtained, where the index
(r,£) refers to the “host” interval I,, contained in w,, if r > 1o, while
Wrg—1,6 C I\ Uyy. Then we discard all intervals &, ; for which

(2.11) e > (j—1).

Mapping the remaining intervals via the inverse of the diffeomorphism (see
[DMS, Prop. V.6.2]) z;_; gives finitely many subintervals of w which we
include in 73]’». Further intervals @, ¢ need to be discarded from 73]’-, using a
requirement denoted (F'A;) or (FA}) in [DMS, Section V.6], [Mo], which
finally defines P;. For further use, we denote these remaining intervals by

(2.12) wrp =251 (@) -

15This fact is used before [DMS, Lemma V.6.8]. (There, W, is mistakenly mentioned
instead of Wi , . Our 7o is denoted by A and our z,(a) is denoted &,+1(a) in [DMS].)
16We refer throughout to [DMS, Section V.6]. The original ideas and key estimates
appeared previously in the work of Benedicks and Carleson [BC1, BC2]. See Footnote 18.
1TThat is, either j is not a return, or it is a return within the bound period.
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It is well known'® [BC1, BC2, DMS] that, if we replace the condition
(2.11) (used to discard intervals) by the exponential condition

(2.13) w N Ife 20 and e > eopcli-D)

to construct sequences P;’BC and PJBC, then there exists A\cp > 1 (called e
in [DMS, (V.6.4), Theorem V.6.2]) such that for any small enough Spc >
apc > 0 there exist N{ such that, if ry is large enough and € > 0 small
enough, then the PP satisfy (2.3)-(2.7) ((2.5) is called (EX;) in [DMS,
Section V.6]) for some C' < oo, and the following condition (noted'? (BA;)
in the literature) holds for all j > N}

(2.14) 2T (e) —c| > e ™8, YNj<n<j, Vacw Ywe PO

Since Acg does not depend on apc, Ny, or Nj, we may assume that
ldape < log Aog

and we may replace Ny by max{Ny, Nj}.

In particular [DMS, Prop. V.6.1, Lemma V.6.1 b), c)] give y9 > 0, Acg =
e’ € (1,e7), and Cy > 0 (independent of g and €) such that, if a € ,, and
ver1(a) < n, writing py, vy for pe(a), ve(a), we have

TW+1—(W+P4+1) 1(vetpetl > Yo (Vet+1—(vetpe))
(T2) (T ()] = Mg -
To establish (2.5) (the bound below will also be used for (2.34)), one takes
ro such that
r3C¢ log Ao > |log Co| .
The key distortion bound [DMS, Prop. V.6.3] gives C' such that
' (a1)

i (az)

(2.16)

<C7 VNOSJS”» val)aQEw)

whenever n + 1 is a free return time of w € P, with z,,11(w) C Uy /2. The
bound (2.6) follows from [DMS, Prop. V.6.2 and Theorem V.6.2].

Let Q; = Upepr w, recall Q;, and define ch and Q;-’BC accordingly,
J
setting

(2.17) Qpc = QBc(a*,Ozgc) = ﬁijBC, so that Q*(a*) C QBc(a*) .

It is easy to check that (2.11) implies (2.8) (for returns during a bound
period, use that £~ —e=Bc > j=r0 for all Ny < £ < j—1, up to increasing
Ny again). Our choice of Ny implies Q; C ch. Also, (2.6) with (2.4) imply
that all points in €, are transversal. Since (2.7) is an immediate consequence
of (2.5)-(2.6), it only remains to establish that a, is a Lebesgue density point
in Q. (clearly, a. € ) and that (2.9) and (2.10) hold.

18The original construction in [BC1, BC2] is for a. = 4, see [Mo] for a self-contained
account. It extends to Misiurewicz parameters: for CE parameters, the condition in [DMS,
Theorem 6.1] is equivalent to (1.4), taking large enough k in the last line of [DMS, p. 406,
Step 2].

198¢rictly speaking, the condition (BA;) does not involve the factor 2, and a condition
(BAj) requiring that for each w € PJI-BC there exists a € w with [T (c) — ¢| > e7"*BC
for Ny < n < j is used in some lemmas. See [DMS, Section V.6, Step 5].
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To show that a, is a Lebesgue density point of {1, we may follow?® [DMS,
Step 7 of the proof of Theorem V.6.1], replacing Ce~*“0 there by C’i~"0,

We next establish (2.9) and (2.10). For suitably small 77 > 0, and for
Jo > 1 such that?! H‘;’; (1= e~ W) > 3/4, the parameter exclusion rule
(2.13) gives df, > 0 (tending to zero with €) such that ([DMS, Section V.6,

Step 7], [Mo, §6])

J

(2.18) wn Q%) > (1= djeM|w|, YwePES, Vj> Jo,
' |Q}BC| > ‘Qj,BC’ — e IMwy|, Vi>Jo.

The above implies [QP€| > (1 — dje™)[QPG| — e |wy| for j > Jo, and,

exploiting that |wo| = [QBY| for all n < Ny with Ny > Jy, and using the
definition of Jy, also that

J J
—nn —1n 1 .
0202 ([T = doe ™) = 35 ™ Jfonl = glonl . %52 o,

n=Jp n=Jp

(By taking larger Jy, i.e. smaller €, we could replace 1/2 by a number close
to 1.) Thus, applying inductively

QP > (1 —dhe ™) — 2" W) |QP|,  Vj=> s,

we find 7 > 0 such that for any j > Jy

(219)  [Qpc| = [JQ — (g +2)e™™)Q7G] = (1 = (do + 2)e™ )07

n=j

Recall that we fixed d; € (0, % log A\cg) (independently of xp). Let J;
be such that [[72 ; (1 - e~ — j=2) > 3/4 and return to the sets ;, Q;
constructed using the (polynomial) exclusion rule (2.11) for kg > 1/d;. We
claim that for any dg > 0, if € is small enough,

. —dn . j—diko ' .
> - >
(2.20) {’“”Qa|>(1 do - ) w|, VwePj1, Vi>Ji,

1] > [ ] — eIy, vizJi.

Before establishing this claim, we note that, mutatis mutandis, (2.20) com-
bined with the arguments leading to (2.19) implies (2.9), while the more
precise claim (2.10) follows from the refinement of (2.20) coming from the
second statement of [DMS, Lemma V.6.9] (see the use of [Mo, Lemma 6.3]
in [Mo, Lemma 6.4-Prop. 6.5]).

To show (2.20), we proceed in three steps, performing the necessary changes
in the proof in [DMS, Section V.6]. Recall (2.12).

Firstly, up to taking larger Ny, the conclusion of [DMS, Lemma V.6.5]
(which deals with (BA}) for w € P;_ satisfying (BA_;) and (EX;_1) and

20We mention a typo there: Although the constant C' = C'(e) in the unnumbered
equation on [DMS, p. 433] tends to zero as € = |wo|/2 — 0, the constant Cj is (fortunately)
uniformly bounded away from zero. See the proof of [DMS, Lemma V.6.5].

21gince 77 is independent of €, 79, No, we may take No > Jo.
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having a return at time j), if we replace the exponential rate (BA;»_I) there
by our polynomial rate (2.8), becomes

|('u \ UT‘ZI{O log j wﬁf’
wl

(2.21) >1-Cj %R Yi>N.

To show this first claim, use that the constant Cy € (0, 1) (introduced above)
is independent of ko (because Acp does not depend on k), and that [DMS,
Lemma V.6.1] gives that the bound period p of a free return v < j with

(2.22) Loy Cay(w), for ro<r <rkglogr <rkglogj,

satisfies p > Cor’. Then, up to taking larger Ny, we can replace [DMS,
V.(6.20)] in the proof of [DMS, Lemma V.6.5] by

r’ —1+d1)r’ 1

- (
‘ p/4 e e
(2'23> ‘mj(w)’ > )‘CE (7”’)2 = (7“’)2 > jno(l—dl) ’

jZN07

where we used d; < % log Acg in the second inequality. We can thus replace
the chain of inequalities after [DMS, V.(6.20)] (using the distortion bound
(2.16) for @ C w the largest interval with z,(w) C U, /s, taking e small
enough and Ny large enough such that (2.23) also holds for @) by

|UT‘2I{0 log j wT‘yf‘ < ’UT’ZNO log j wr,£| < L 1 .—di-Kko
jw] - @l T (@)
Secondly,?? [DMS, Lemma V.6.6] (which deals with (FA;)) uses (2.14)
only via [DMS, Lemma V.6.3], while [DMS, Lemma V.6.3] still holds (with

the same proof) if we replace (2.14) by our stronger assumption (2.8).
Thirdly, [DMS, Lemmas V.6.7-6.9] are unchanged, establishing (2.20). O

Lemma 2.3 below is the analogue of [Sch, (III)’]):

Lemma 2.3 (No Exceptionally Small Sets). For any k1 > ko there exists
N1 > Ny such that |zj(w)| > j=" for all j > N1 and w € P; = Pj(ax, ko).

Proof. We first show the lemma assuming that there exists ds € (0,1) such
that for any j > Ny, and any w € P;, we have
dae™ (1 —1/e)
(K0 log 7)o
with 7 as in the proof of Proposition 2.2. Indeed (2.24) implies that

—ro _ 1
() > 20D L
K3 g (log j)
Clearly, there exists Ni(k1) > Ng such that the right-hand side is larger than
77" for all j > Nj.
To establish (2.24), we shall use (2.8). If j 4+ 1 is an essential free return
time of w, then taking r minimal such that z;(w) contains an interval I fe,

S=1/e j7r(1—1/e)
> :
72 (kologj)?

(2.24) |z (w)] >

vwepj,VjZNo.

(2.25) jaj ()| = [ I = e

22\We mention here a typo: [DMS, V.(6.24)] follows from [DMS, V.(6.22)] (and not
[DMS, V.(6.20)] as stated there).
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Otherwise, letting j' + 1 = vy(w) > v1(w) be the largest essential free
return time of w such that j' + 1 < j 4 1, we have w € P} (since if © D w,
& € Pjs, then @ is never cut between time j' and j), so that (2.25) implies

1-1/e - 1-1/e
(rologj')?(j")%0 = (kologj)2j"o -
We shall combine the above bound with [DMS, Lemma V.6.3, Props V.6.1—-
6.2] to handle the three cases left, namely: the time j 4 1 is an inessential
free return of w, the time j + 1 is a return within a bound period of w, and
the intersection of z;(w) and U,, is empty.

If j +1 = vj(w) is an inessential free return then [DMS, V.(6.15) in
Lemma V.6.3] gives, for ' < i as defined above,

Y Y 1-— 1/6
. i—1 , i—1
(2.26) )] 2 27 oy )] > 2

If j+1 is a return within the bound period of a previous free return j”+1 of

w, then using (2.25) for the bound period of an essential return, respectively

(2.26) for the bound period of a nonessential return, and applying the first
claim of [DMS, Lemma V.6.3], we find d2 € (0,1) such that

da2(1—1/e)

(Ko log j)2jr

If ;(w) N Uy, =0 then [DMS, V.(6.2) in Prop. V.6.1 and Prop. V.6.2] and
(2.25) give

|20 (W) >

(2.27) 2 (W)] > doNag |2 (w)] >

d2€7r0(1 — 1/6)
(ko log j)?j0
We have shown (2.24) and thus Lemma 2.3. O

(2.28) 25(w)| > doe ]y (w)] >

2.3. A Holder Local Distortion Estimate. From now on, let a, €
(amix,4) be a Misiurewicz parameter, fix k9 > 11/3d;, and let Q, =
Qy(ax, ko) C Qpc = Qpc(as) be the positive measure Cantor set constructed
in Section 2.2 via families P; = P;(ax, ko). The following?® replaces [Sch,
(33), (31)]. The bound (2.31) is new.

Lemma 2.4 (Hélder Distortion Bounds). There exists C' < oo such that for
all n > Ny (with Ny as in Proposition 2.2) and any w € Py, = Pp(ax, ko)
/ /
(2.29) 1o W'go, Vi<j<n, Vacw.
¢ NIy (@(a)
In addition, there exist C' < oo and My > kg such that, for all n > Ny, each
@ € Py, = Pplax, ko), and every w C @ and « € [0, 1) satisfying

(2.30) |2 (w)| < n~Mo/(=a)

we have

(2.31) Zn(@1) <1+ Clan([ar, as))|* Vay,as € w
. x,n(a2) >~ n 1,2 ) 1,Ud2 .

If « =0, and n+ 1 is a free return of w € P, the bound (2.31) is just
(2.16). We shall require (2.31) for some o > 0 in Corollary 3.4.

23For [Sch, (30)], see (2.2). We do not need [Sch, (32)].
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Proof. The bound (2.29) is an immediate consequence of (2.6).
We first claim that** there exist C' and k2 > 0 such that for any n

7j—1
(2.32) D |ai(w)| < TR pi(w)|, VI<i<n, Vw CDEP,.
=0

To start, there is C' such that for any 0 < i < j < n, using (2.3) and (2.29)
there exists a = a(i, j,w) € w such that, setting X; ; = x; o xi_l,
pi@)] _ @] _|e@] __ ©
zj (W) X (@) @)l = (T )(Te ()]
(We used X; ; = 2/x; and the mean value theorem in the second equality.)
Next, let s;(a) be the largest ¢ with v(a) < j, and put®

qe(a) = vep1(a) — (ve(a) + pe(a) + 1), (=0,...,55(a) -1,

sj(a

qu(a)(a) = max{07j - (VSj(a)(a) +p3j(a) (a) + 1)}7 Fj(a) = Z ‘U(a)‘
=0

(2.33)

~

Set p = pe(a), ve = ve(a), @ = q(a), and s; = s;j(a). Assume first that
i = 0. Then, we have (see e.g. [DMS, V.(6.11)])

(T (Ta ™ ()] = (T (Tu(e)]

= (@Y (@) (T (T (o))
s;—1
: (H (Tpetty (T <c>>H(Tgf)’(T;Z*W“(c))r) .
=1

Since a satisfies (BA),, and (F'A),, for all m < n, the bounds (2.15) give
AcE, Yo > 0, and Cy > 0 such that

sj_l 8]'—1
[T 1@ty @ @)@y (mreee @) = [ Coeomay.
/=1 (=1

Similarly, [(T' 1) (Tu(c))| > Coe™¥'. Next, if j < vs, + ps; + 1, we have

+1—vs . Vs j— Vs .
(T T (T ()] > CEN T o™,

where we used (2.8) and [DMS, Lemma V.6.1.b, Prop. V.6.1]. If j >
vs; + ps; + 1, we have, using [DMS, Lemma V.6.1.c, Prop. V.6.1]

(T (e ()] = O3N e o

Summarising,

) 8j+4 )
(Y (T = DA eorite) joro

240ur proof is inspired from that of [DMS, Theorem V.6.2]. This is suboptimal but
enough for our purposes. Adapting instead [DMS, Lemma V.6.4] could enhance (2.31).

25The condition (FA), implicitly used in Proposition 2.2 says that, for some fixed
arbitrarily small 7 > 0, Fy(a) > £(1 — 7) for No < £ < n. We shall not need this here.
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Since py > Corp (see after (2.22)), we have j—F; > jCoro while s; < j/(Coro).
We took 7 large enough (see after (2.15)) such that

(2.34) CortNg BN 5

Finally, using the trivial bound €5(®) > 1, we find

L

G/ J
(Z2) (Talo)l 2 =5

Ifi > 1 and vy, (a) +pe; (a) <@ < vg41(a) for some ¢; > 1, then we proceed
as for i = 0, replacing |(T"* 1) (Ty(c))| by |(T, ") (Ti1(¢))], and setting
Fj(a) = ve11(a) —i+ ZZJE(Z)JA qe(a). Then

G—iN/ ikl ng_SiH ((1=9)=Fi,j(a))/4_~oF; i(a) :—ko
(T (T () =2 ——5—Ack 0TI GO

‘We have ] -1 — Fi,j > (] - ’L')C(]To while S5 — S5 < (] - i)/(CoTQ), and we
find, using 07:i(®) > 1 (we do not know or need F; j(a) > (1 —7)(j — 1)),

c— K0

G—iN/ (i J
(T3 (T3 ()] = 5

Otherwise, vy, (a) <i—1 <y, (a) + py,(a) for some ¢; > 1. There may be
(nonfree) returns during the ¢;th bound period. To bypass this difficulty, we
exploit that the length of the /th bound period is of the order r if z,,(a) € I,
([DMS, Lemma V.6.1a]). By (2.11), we have r;, = O(log(vy,)) < Ckplogi.
Thus, the missing factor in the ¢th bound period is < AC*0log8i < jk2 and

(@Y @) = Lo
a a - Ci,{Q °

Summing over ¢, and recalling (2.33), this establishes (2.32).

Next, taking aj, as € w, note that (2.7) (using the first bound of (2.4) if
i < Np) implies that for all Ny < i < n, recalling 7} (z) = a(1 — 2x),
T, (wi(a1)) — Ty, (wiaz))|
< Ty, (wi(ar)) — Toy (wi(ar))| + [Ty, (zi(ar)) — Ty, (2i(a2))]
(2.35) < lay — as| + 2az|x;i(a1) — zi(az)| < (C + 2a9)|z;(w)] .

(Note that (2.35) replaces [Sch, (36)].) We claim that there exists C” with

(T, ) (olar))

(230 ‘a&yum@»

’§1+C%05%HHMMA@LV1§j§n.

(The above replaces [Sch, (37)].) Indeed, using the classical bound

j—1 Jj—1 R
H(1+Ui)§exp( UZ'> §1+623251’in¢, if all v; >0,
i=0 i= i=0
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we have, setting C” = 2C"C(C + 2as),

, -
(T elo)) | Tt
(T, ) (wo(a2)) | 13 T (zi(az))
Ty, (@i(a1) | j—1
<14 S | 5| Ta (@) —1‘
a |1, (zi(az))
. j—1
<14 el OF202) Ting Clr@)li™ (0 4 2a5) Y Ol (w) i
=0
(2.37) < 14 TR L o PRt g ()], W <

where we used (2.35) and (2.8) (the first bound of (2.4) if i < Np) in
the second inequality, and (2.32) in the last inequality. Setting My :=
4ko + 3 + 2k, if (2.30) holds for w, then (2.32) gives for all Ng < j <n

C//j2no+1+n2 ‘-Tj (w)’ S C// 2Kk0+1+kKo Cl ‘ko+14+kKo |xn(w)]

:3k0+3+2kK9

This proves (2.36). Similarly,

Therefore,

(17 an )(10(a2 )‘ < 1, C" +2k0+1+kK2 |, .
7( 77 ) (zo(ar) 1+ C"" |z (w)|-

1 1 ‘< i J 22 | (w)
(T4, (wo(a1))  (Thy)(wo(a2)) |~ |(T4)(zo(a1))]

We can then adapt the end of the proof of [Sch, (31)]: Comparing each term
on the right-hand side of
x (a) aaTa) Tj— 1( )) -
"7 = x4 (a) + NaeweP,,
@) (@) ~ 0 Z (T)'(z0(a))

a

for a = a1 and a = ag, we find, since z((a) = dgc1(a) = 1/4, and

|0aTalas (25-1(a1)) = BaTalas (2j-1(a2))| < [zj-1(a1) —zj-1(az)| < |zj-1(w)],
recalling (2.5), and applying (2.32) and then (2.30) for My = 4ko + 3 + 2k2,

2 (@) ) (a2) PRI o sl
’(Tgﬁ)’(xo(m))‘ < () (zo(a)) + Clay 2\—1—0; i |25 (w)]
M =~ /n4n0+3+2/~c2 - (w
= @y o | T ol
__Tal2) | A v
= [@ay ey |+ )

Finally, we have, using (2.6) (which plays the role of [Sch, Lemma 2.4]),

(

ea)| T o)) (. ol TY (@o(a))]
2 (a) <‘< 0 )i (wo(az)) <1+C‘$"(w>' )
)

<1+ CClzp(w)|*. O
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2.4. Uniform Decorrelation and Holder Response. The maps x; are
not the iterates of a fixed dynamical system admitting an invariant measure.
To exploit statistical information on the iterates of the mixing CE map
(Tags fay ), we will “switch locally” from z; to T, (see Lemma 3.3), using
that any a € €, satisfies?® the following uniform decorrelation result for
Holder continuous observables. For ¢ > 1 and s € [0,1/¢q), we denote by
Hi(I) = F;4(I) the Sobolev space of functions of differentiability s and
integrability ¢ supported in I (see [RS]).

Proposition 2.5 (Uniform Decay of Correlations). For any s > 0 and g > 1,
there exist C' < co and py < 1 such that, for all ¢ € HJ(I), ¢ € L*(dm),
a € Q. (ax, ko)

/Olsa(on;l)dm—/olsodm/olwdua

For any w > 0, there exist C' < 0o and pm < 1 such that, for all p € C%,
Y € L®(dm), a € Qu(ax, ko)

1 1 1
/sO(onZZ)dua—/ sodua/ Y dpg
0 0 0

We also use Holder bounds on a +— pi, as a distribution (in Lemma 2.8):

< Cllelms L ) (pg)" ;¥ > 1.

< Cllellwll¥lle @uq) (p=)™, ¥ > 1.

Proposition 2.6 (Fractional Response). For any © € (0,1/2), there exists
C such that for all o € C*/?

(2.38) ‘ [ oo [ ot

Our proof of Proposition 2.5 uses the following facts.

< Cla—dPlgllin, VYa,d € Qulan, ko).

Sublemma 2.7. For any a € Qpc, the density hy of pq lies in H;(I) for all
s €10,1/2) and q € (1,2/(142s)). In addition, for any (Ho, ko) polynomially
recurrent ay, there exists Cs g.q, < 00 such that
sup ||ha||H;;(]) < Cys,q,a*= .
a€Qyax,Kko

Proof. In the Misiurewicz case, the first claim is [Se, Theorem 10] , using
Ruelle’s [Ru, Theorem 9, Remark 16.a] decomposition of h, into the sum of a
C' function and an exponentially decaying sum of “spikes” = — |z—cy(a)| /2
and square root singularities z — |z — ¢(a)|*/2. For a general a € Qpc, set
Ta_f = (T5|Uk,a’§)_1, for k > 1 and ¢ € &, where Uy, 4 is the monotonicity
interval of T% containing ¢, located to the right of ¢ for ¢ = +, to the
left of ¢ for ¢ = —. Then, since we assumed Aog > e4*BC in the proof of
Proposition 2.2, use [BS1, Prop 2.7] that there exist a C'! function ¢, : I — R
and C* functions Z¥ , : [0,1] — [0, 1] supported in a neighbourhood of ¢y (a)
in TF(Uy, .+ ), such that

00 =k (—k —k
(239) ha(-x) _ ¢a(x) + Z Z Xk,a(x) “a,((Tag (l‘))wa(Ta,g (SU))

k=1c¢e{+ -}

26The factor loll Ly (@m) in the right-hand side of [Sch, Prop. 4.3] is replaced in Proposi-
tion 2.5 by [|o|lr1(apq) < l¢llLoo(am)- This does not impact [Sch, p. 36, use of Prop. 4.3].
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where Xpo(?) = ligcie,(a) if +T% has a local maximum at c. Setting
V== ¢ - Ya, we find C' functions Uy ¢, for £ =1,2,3, with

\Il(Ta_ck(x)) Uy 1() 1/2
(2.40) (TEY (TR @) e = enla)[2 +W2(z)|z—cp(a) "+ P s(z)
for any = € supp(xk,q). Finally, use [Se, Lemmas 11-12].

For the second claim, it is convenient to use an alternative decomposition
of hy. First recall that [BBS, Cor 1.6] gives a set {5y of full measure in the
set of mixing CE parameters such that, for any a € (g and each kg > 1,
there exist Hy > 1 and a set Ag(a, ko) C Qgow of (Hop, Ko)-polynomially
recurrent (and thus transversal) parameters, with a as a Lebesgue density
point, such that Proposition 2.5 holds for all a € Ay. (It is unknown whether
a € Ap.) The proof involves constructing a tower for each parameter in Ag.
We claim that, up to reducing the value of € in the proof of Proposition 2.2,
we can replace @ by a. and Ay by Q. (ax, ko). Indeed, Ay was constructed in
[BBS, Prop. 2.1], and it suffices to observe that the required uniformity in
constants is satisfied by (2.5) and (2.8), while [BBS, (8) and (7)] are exactly
[DMS, V.(6.1), V.(6.2) in Prop. V.6.1].

Let then

. N .
o () (z) = ————;(T,(x))
Zi () (Tad @)
(for a suitable A > 1) be the projection from the tower with polynomial
recurrence used in [BBS], and let £, be the lift £,II, = I1,L, of the transfer
operator Lop(z) = 3 1, )=z P(¥) /T2 (). Then?" there exist C' < oo and

0 < 1 such that, letting || - ||/, be the norm of the Sobolev space BZV% of [BBS],
A~ ~ 1
(241)  £2@) - hai (@)L < Clele", Ve eBY, vaeqs,

where iza is the fixed point?® of L, on BZV ! normalised by [ Haﬁa dm =1,
while 7, the nonnegative measure whose density with respect to Lebesgue
in the level j of the tower is M, is the fixed point of the dual of L. (see
[BS1, (85)], note that v(hs) = 1 is automatic). Since Ilyhe = he and the
W{ norm dominates any Hg norm on I if s € [0,1) and 1 < ¢ < 1/s (by the
Sobolev embedding, more precisely [RS, Chapter 2] the bounded inclusions
Wl c Wy =F, C F{y CFjy=H; ifo=1+s—1/q€ (0,1) and
q € (1,00)), the decomposition (2.40) combined with the uniform bound
(2.41) (for ¢ vanishing on all levels > 1 and constant on level zero of the
tower, with 0(p) = 1) gives the second claim of the sublemma, using again
[Se, Lemmas 11-12]. O

Proof of Proposition 2.5. Recall from the proof of Proposition 2.2 that we
have A\cg > e'4@B¢. By mollification, it is enough to prove both bounds
for C' functions ¢. It is in fact enough to show the first bound for ¢ € C*:
Indeed, again by mollification (see e.g. the proof of [Se, Lemma 14]), if the

27[BBS, (66)] gives uniform Lasota—Yorke estimates. [BBS, Lemma 3.8, Lemma 4.5,
Lemma 4.6, Prop. 4.1] give the weak norm bounds needed for Keller-Liverani [KL].
28The fixed point property determines h, by its value on the level zero of the tower.
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first bound holds for ¢ € C, then it holds for any ¢ € HS(I) with ¢ > 1 and
s > 0. Therefore, since the density h, of p, lies in Hj([I) for all s € (0,1/2)
and ¢ € (1,2/(1 + 2s)) by Sublemma 2.7 (with norm uniformly bounded in
a), the second bound follows from the first bound for ¢ € C! (using that C*
functions are bounded multipliers on Hy).

Next, we observed in the proof of Sublemma 2.7 that we can replace the
set called Ag in [BBS, Cor. 1.6] by Q.(ax, ko). The first bound for Lipschitz
continuous ¢ thus follows from the second assertion of [BBS, Cor. 1.6], since
Q. C [amix,4). Indeed, note first that a is topologically mixing if and only
if its renormalisation period P, is equal to one. Second, observe that the
constant C,  in the second claim of [BBS, Cor. 1.6] can be replaced by
Cllellz 1Yl 1 (du,)» for a constant C uniform in @ in view of [BBS, Lemma 4.5,
Lemma 4.6] and the principle of uniform boundedness. More precisely, using
the notation from the proof of Sublemma 2.7, we have

/ (4 0 T dm = / T (£0(3)) dm i T1,(¢) = .

/ (4 0 T pha dm = / ST (ER (@) dm i Ta(Be) = @he.

Since?” Myhg = ha, any Lipschitz continuous ¢ can be written as I1,(¢) (take
o = ¢ on the level zero, and ¢; = 0 on levels j > 1) such that, on the one
hand, ||¢[/, < C||¢|/1 uniformly in a, and, on the other hand, (@) = [ ¢ dm,
we conclude by applying (2.41) from the proof of Sublemma 2.7. O

Proof of Proposition 2.6. If a = a,, the bound is an immediate consequence
of the first claim of [BBS, Cor. 1.6], since we can replace the set denoted
Ay there by Q. (a4, ko), as observed in the proof of Sublemma 2.7 and used
in the proof of Proposition 2.5. If a # a,, the uniformity of the constants
given by Proposition 2.2 ensures that we may construct the reference tower
in [BBS] at a (instead of a,), viewing o’ as a perturbation of a. O

2.5. Holder Regularity of the Variance o,(p). Propositions 2.5 and 2.6
will imply the following regularity of a — o,(p) on .

Lemma 2.8 (Regularity of o,(¢)). For any w € (0,1], there exist § €
(0,min{1/2,w}) and C < oo such that, for each ¢ € C% with o,,(p) > 0
there exists €, > 0 such that

Ce,(p) := inf oa(p) >0,

a€Qq, N[ax—e€p,axtep]

and such that for all a,d’ € Q. (ax, ko) N [asx — €p, ax + €,] we have

(2.42) |0a(p) — 0w ()] < lllerla —a'|”.

C
2C(p)

29The Banach space of [BBS] requires that the function on level zero of the tower be
supported in (0,1), so this proof cannot cover the case a = 4.
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Proof. Let kg > 1 be a large integer to be chosen at the end of the proof. By
the second claim of Proposition 2.5, there exist p = p < 1 and Cy such that

> /(so—/sodua> - ((w—/wdﬂa>ocp5> e

k>ko
ko
<Collelz =, Vho=1, Vaef., VpeC®.

Set Aq = [ @dpu,. Since [((p—Aa)oTF)(p—Ay) dpa = [(poTH)p dug— A2,

we have
ko—1

on() = ol <2 )

/ (poTh)dpa — /w(soon/)dua

ko 1
+2Z/ (0o T8 da— [ 00 Th) di
ko—1 2 2
o) (o)
k=0

o P
+ 4COH<PHw1 — Vko > 1.

Assume for a moment that @ > 1/2. The w-Holder constant of ¢(y o TF)
(for @ = a or a') is bounded by A¥|¢||2. Thus, Proposition 2.6 gives for any
© < 1/2 a constant C; = C1(©) such that for a,a’ € Q,,, and p € CF

ko
|00 () — 00 (0)?] < koChllpl|ZA%]a — a'|® + Collo]12,

+2kozl/ (@ oTF) dua—/go(cponl)dua . Vko>1.
Next, (2.2) gives that
ook ~ oo Thldia < olw(CAMla - @
Therefore, we find
pro

(243) |oa(9)? = 0w (9)?] < koCrllll2 A% a — d'|? + 4Co |||,
+kollpll=(CA™a —d'|)7

We conclude the proof for @ > 1/2 by dividing (2.43) by |a — a/|?, for small
enough 6 > 0 and optimising in ko, using also (04 — 04/)(0q + 00/) = 02 — 02,

If @ € (0,1/2), mollification gives ¢, € C''/? and C4 such that

@l s sup (o TH)p — (pv 0 TH)pu| < Crv™AF||¢| -,

for all small v > 0, all 0 < k < kg, and all a € ,,. To conclude, optimise in
v = |a — a|% for small fy > 0, taking # smaller (in particular § < wfy). O

ol < Cav™ =12
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3. SWITCHING LOCALLY FROM THE PARAMETER TO THE PHASE SPACE

Let ay, Pj(ax, ko), and Q, = Q,(as, ko) be as in Proposition 2.2 for
ko > 11/(3d1), and fix @ € (0,1). This section is devoted to Proposition 3.2,
the main estimate (analogous to [Sch, Prop. 5.1]) towards a law of large
numbers for the squares of the blocks which will be defined in Section 4 (see
Lemma 4.2).

From now on, fix w € (0,1) and a w-Holder continuous function ¢: I — R,
recalling ¢,, 0,(¢) from (1.6), (1.3), and assume o,,(¢) > 0. Lemma 2.8
gives €, > 0 such that

(3.1) ga(@) >0, VaeQf:=QN[ay —€p,as + €.

If e, < €, we replace Q, by QF by replacing € in the proof of Proposition 2.2
with €,. (This is harmless as it can only improve the constants.)

Remark 3.1 (#-Holder Whitney Extensions of ¢, and &,(a)). By Propo-
sition 2.6, the function a — [ @du, is ©-Holder continuous on . for any
© < 1/2. By Lemma 2.8, the function a — o,(v) > 0 is 0-Hélder continuous
on Q. for some 0 < min{1/2,w}, and uniformly bounded away from zero on
QF. Taking © > 0, the map a — pq(u) = (p(u) — [ odp,)/oq is 8-Hélder
continuous on Qf uniformly in u € I. By the Whitney extension theorem, we
extend each map a — @q(u) to a 6-Holder continuous map on [a.—€p, asx+€,],

uniformly in w € I. In addition, there exists C' < oo such that

B2 lallc < ll@allw < Cllpllw,  Va € a. —€p ax + €]

Then, using (2.2), we may extend each map a — &,(a) = 0o (T (c)) to
a 9-Holder continuous map on [a, — €4, ax + €,], with 0-Hélder constant
bounded by CA’" V) : Indeed, recalling x,(a) = T (c), just decompose

(3.3) €nl(a)=n(d) = ga(@n(a)) ~pu (zn(a)) +ou (T3 (0) —pu (T (0)) .
Fix o € (0,1) such that (in view of the use of (2.30) in Corollary 3.4)

My 3
3.4 < —.
(34) l-a™ «
Fix ¢ > 1 and 0 < s < min{w, 1/¢q}, and let
(3.5) Ao = min(M.p, p~1/2) > 1,

where A\cg > 1 is given by (2.5), while p = max{p}, p} < 1 is given by
Proposition 2.5, and 0 € (0,min{1/2,w}) is given by Lemma 2.8. Finally,
recalling A from (2.1), let n € (0,1/2) be so small that

2A N\ A&
: ) < —CE
g0 (ep) <Y< 57
Define the expectation E (1)) of v € L>®(QF) by3°
1
(3.7) B) = gy v

The following result is the key estimate on ¢;(a) = ©a(TIT(0)).

30We restrict to the Cantor set Qf here and thus in (3.8). The bound (2.9) is used in
the proof of (3.8) (but not for (3.9), Lemma 3.3, or Corollary 3.4).
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Proposition 3.2. There exist C, < 00 and K < 0o such that
k+n—1 2
(3 6) -

j=k

and, setting®* v(k) = [k — k4], for every nontrivial interval w C & € Puk)
with w N QY # 0 and )\akm <z (w)] < v(k) 73/, we have

(3.9) ’/(Hf:l@) dm —n

and, for any sequence Uy with Cy := sup;, k=83 sup || < oo, we have

<C,, Vk2>max{2K,[2/n]}, V1<n<nk/2,

<Cy. Wk=[2/n], ¥1<n <nk/2,

(3.10)

E(Wy) — Q1|/ 0, dm' < CyCy, Yk > 1[2/n],

where

(3.11) Qi) == {w € Qo) | wNQE # 0}, ng(k) = UneQ. oo

for any refinement Qyuy of Py such®? that )\akl/4 < |zy(w)] < v for
allw € Q)

Proposition 3.2 is proved in Section 3.1. Like for its analogue [Sch,
Prop. 5.1], the first step will be to show the local estimate (3.9) using
Lemma 3.3 through its Corollary 3.4 (the analogues of [Sch, Lemma 5.3,
Cor. 5.5]).

Lemma 3.3 (Switching Locally from Parameter to Phase Space). Fix
by € {1,2,3,4}. There exists C < oo such that we have, for any integers

n<n; <n+nn, 1<i<Ay,

for every @ € P, and each nontrivial interval w C & with w N QL # 0,

Lo
312 [ ek Hsoao (T2 )y
=1
T (w)
< CA "z (W), Vag € wN Q7.
Corollary 3.4. There exists C3 > 1 such that, for by, n, ni,...,ng,, and w

as in Lemma 3.3, if, in addition, |z, (w)| < n=3/?, then for any ag € wNQL,

1
‘M Hgng

H‘Pao (Toy ( )dy‘

< CylJan(@)|® +A5™).

’ zn(w

31The stretched exponent 1/4 for v(k) and the lower bound can be replaced by any
number in (0, 1), without changing the statements, up to adjusting intermediate constants.

32We have )\gkl/4 < aw(w)| for all w € Pyxy by (3.21).
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Proof. Since (3.4) implies (2.30) for w, the change of variables y = x,(a) on
w, combined with the distortion estimate (2.31), gives

‘! /Hgm (a) da - |xn / ﬁﬁne(xnl;l(y))dy‘

(@) =1
- 1 |zn (W)
(3.13 Gudlanli o) ~1)a
\xn ® el_I e g (ala ) Il
|3:
’; H |€n£ $n‘w | dy
n( (@) p=1

Since supy, ”kaLOO < 00, the claim then follows from Lemma 3.3. O

Proof of Lemma 3.3. For ag € w as in the statement, the functions

Bey) = Brao(¥) = Cao (T "), &) = Erw(y) = &ny (@nl ' (1))
with

fnz (xn’cjl(y)) = @mnul(y) (xne ($n|;1(y)) Qp$n|— (y )(T;j‘tl (y) (C))
are bounded on z,(w N Qf). Decomposing
1626361 — G1P2P384] < |(&1 — 1)E8sla| + [B1(& — $2)Esé4]
(3.14) + [P102(83 — P3)&al + [G152P3(84 — Pa)l
it is enough to find a uniform constant C' > 1 such that
1 ~ _
€00 — Pragl dy < CAG™,  Vag €wnQf, 1 << 4.

‘l‘n(u})| T (w)
We will do so by showing the pointwise estimate
€0 (Y) = Prag () SOXN™,  Vy € ap(w),Vag €wnNQP, 1 << 1.

For a = z,|;*(y), we decompose

E0(y) = Prao(y) = &n (@) = ay (T " (n(a)))
= 0a(Tn,(a)) = Pag(Toy " (zn(a)))
(315) = @al(n,(a)) = ao(n, (@) + Pag (¥n, () = Pag (Tay " (2n(a))).
Using Remark 3.1, there exists C', independent of ny, such that
(3.16) |Pa(@n, (@) = pao(tn,(a)] < Clwl’,  V{a,a0} Cw.
Hence, using our choice (3.5) of Ao, and since |w| < CA L by (2.7), we get
(3.17) |Pa(@n, (@) = ¢ag (20, (a))] < Clw]” < CAT™
For the last two terms in the right-hand side of (3.15) note that since
a = x|, (y) implies zy,,(a) = TP (c) = T (T (c)) = T "(y), we
have, using (2.2),
(3.18) |an, (2als ' (v) — Toy ()] = T3 " (y) — Tot ™" ()]
< CA" "a — ap| < CA™ ™w], Yy € zp(w) .
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Then, since ny, — n < nn, our choice of g, 1, with (3.2) at a = ag give®?

(3.19) ‘San(%Lz( ) — ‘Pao(TW "(zn(a)))l
= ‘Spao xm(xnul(y))) San(TW "(y ))‘
< CONM™7|y|™ < COAT™M|w| < CON™,

using again in the last inequality that |w| < CAS% from (2.7). We conclude
by combining (3.17) and (3.19) into (3.15). O

3.1. Proof of Proposition 3.2. We first show (3.9). Let w C @ € Py_p1/4,
with & > 2n/n, be as in the assertion. Writing

k+n—1 k+n1 k+n—1
f) dm = < £dm—i—2 119 dm>,
[(%s / X [ue

it is sufficient to show that

k+n—1 1 k+n—1
(3.20) > T <fj +2 ) gjgg) dm‘ =
Jj=k l=75+1

Fix ag € wNQZf. By Corollary 3.4 for £y = 2, we have, for k < j < k+n—1,

k+n—1
oL

l=74+1
1 ) k+n—1 '
= o o (B2 3 o 0Tl i
v Ty (w) =j+1

+O((k+n— O™ 4, @))

(recall v = [k — kY/4]). Since 0 < s < 1/q < 1 we have that 1y, w) € Hy,
uniformly in v and w (see [St]), so the first claim of Proposition 2.5 gives

/U%m%WMw%UM

= |zy(w)| /Qoao (¢a © TZ )d:uao + O(pj Y), VL=j.

Hence,

k+n—1 k+n—1
‘/<§J+2 Z 5;55) dm = /(%0+2 Z Cao (Pag 0 Ty ])) dftaq

/4y - _
+O((k+n— )0 " @) + Pz (w)[7Y) -
By (1.3) and (1.7), we have

o0
1= /SDZO dptag +22/‘Pao “Pag © Tg, dptag -
=1

33We do not need the analogue of Sublemma 5.4 from [Sch] here.
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Therefore, the second claim of Proposition 2.5 gives
k+n—1

l=j+1
Hence, we find, for k <j < k+n—1and v = [k — k4],
1 k+n—1
2
ITACEEP D)
{=j+1

< Clh+n— )5 ™ £y (@) + P |zo(w)| 1) + CpFI

To proceed we shall use several times that

k4+n—1
1
supsup Z k—i—n—] supZ—<oo
Jj=

Clearly, pFtn=7 < m For the term (k +n — 7)p’ Y|z, (w)| ™1, we use

2o (W) > Ag® " and the definition (3.5) of \g to get, since k > 2n/n,

j—v
p7 < k1/4)\k1/4<)\ k1/4<£<$’ k§]§k+n—1.

|y (@) " (ktn—j)?

. —(k—k1/4) e . —3/a 4
The term (k+n — j)A, is similar. Finally, |z,(w)| <wv gives

k+n—1 k+n—1 .
) k+n—j k+n—k 1
E : (k+n_])|xv(w)|a§ E 3 <n 3 :ﬁ
Jj=k Jj=k

This proves (3.20), and hence (3.9).
We will next deduce (3.8) and (3.10) from (3.9). Fix k1 > ko, let N1(k1) >

Ny be given by Lemma 2.3, and let K > N; be such that £t < )\151/4 for all
k> K. Then, if v =v(k) > K (so that k > K), we have

(3.21) |2p(@)] > v = [k — kYA s AR voep,.
Refining P, to a partition Q, such that
)\akm <y (w)] < p 3/ , Yw € Q,,

we set Q*Q as in (3.11) and we decompose

o) [, (£ o [ (5
L (Ee) e (B e

Then, using (2.9), supy, sup |[€x| < oo, kKo > 3/dy, and v(k) > k/2 > n/n,
k+n—1

k+n—1 2
0 S/ 13 dm §/ &l dm
Q%\Qf( 2 J) m\ﬂf( ]z::k ’

(3.22) < Cn’e, < Cn’nl=dm < O
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which shows that

/(25) in= [ (Zg) ——

k4n—1 2
/ (Z @) dm + O(1).

By (3.9),

k4n—1 2
(3.23) / ( Z §j> dm = |w|(n + O(1)), Yw e Q.

Summing (3.23) over w € Q5. we get that

k+n—1

2
/ (Z @) dm =n+0(1).
0L, ik

Finally, using again (2.9) to see

22| €2,
0<% 1<
e T ek

we have established (3.8), and also (3.10) in the case ¥y, = (Zk+n ! ¢;)? (note

that |¥,| < Cn? < Ck?). For more general ¥y, the same argument, using
dikp > 11/3 in (3.22), gives (3.10). This ends the proof of Proposition 3.2.

= O(ev) = Ofen)

4. PROOF OF THEOREM 1.1 VIA SKOROKHOD’S REPRESENTATION
THEOREM

We will rearrange the Birkhoff sum as a sum of blocks of polynomial
size, approximate the blocks by a martingale, and finally apply Skorokhod’s
representation theorem to this martingale. The size for the jth block I; is
42/3, which will give the error exponent v > 2/5 in our ASIP.3
4.1. Blocks I;. Approximations y; and y;. Fix a,, w € (0,1), ¢
s € (07min{wv 1/Q}>7 P, 97 >\0> n, o, ¢ € Cw> Qf = Q* N [a* - 64,07a* + 6%0] as
in the beginning of Section 3. Set

Peki={we€Pp|lwnQf >0}, Q= |J w, Ek>1.
wePy

Fix v € (2/5,1/2) and®® § € (0, min{1/5,2(y —2/5)}). For i > 1, we shall
approach & : [a, — €4, ax + €,] = C (see Remark 3.1) by the stepfunction

Xi: Qs = C, xi = E(&|Fr,), wherer; =i+ [25] ,

347 block size #1; = j° replaces 3/5 in (4.4) by 1/(1 + b), so that the first constraint
becomes N7 > N®(HY see (4.5). Our bounds (4.25)-(4.26) (with Gal-Koksma and
M(N) ~ NYOHD)y give N7 > NO+2/G0+HD)  Hence, b = 2/3 is the optimum. In the iid
case a block size j/2 gives v > 1/3 ([PS, p. 25]), see also the beginning of [Sch, Sec. 6].

35See Lemma 4.4 for the condition § < 2(y — 2/5).
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with Fj, the o-algebra generated by the intervals in P, ;. Conditional expec-
tations are only defined almost everywhere, but we may set (see (3.7))

fwﬁﬂvgidm
4.1 in"i? *,75 > 1.
(4.1) il = 0 Yw € Pay,, Vi

Thus, x; is defined everywhere on €, ,., allowing pointwise claims about it.
Recalling e, from (2.9) and our assumption A\cg > e'#®B¢ in the proof of
Proposition 2.2, we have the following basic lemma:

Lemma 4.1. For any ACE € (e*BC \/AoE - e~ *BC), there exists C such that
(4.2) 1€i(a) — xi(a)] < C)\CE , Vi>1, Va € Qs

and®® for alli>1,j>0 and all a € Qs ry

(4.3) B+l Fr) (@) = [E(Xitj]Fr;) (@) < Cmin(L, ep;_osy) -

Following [PS, Sec 3.3], [Sch, Sec 6.1], we define inductively consecutive
blocks I; of integers and associated functions y;: Let Iy = {1}, and let I; for
§ > 2 contain [j%/3] consecutive integers. The first blocks are below:

1, 2, 3,4,5,6,7,8,9,10,11,12,13, 14, 15,16, 17, 18, 19, 20, 21, 22, . ..

N N e AN G AU R y
b I I3 I Is Is I7 Is Io
Let M = M(N) be uniquely defined by N € I;. There exists C' such that
(4.4) CTIN35 < M(N)<CN®°, VYN>1.

By (4.2) in Lemma 4.1, there is C such that, for all i > 1 and all a € Q. .,

M(N)
- Z ZXi

j=1 i€l

Z €i(a a)| + C#ly < ON?5

for all N > 1. Hence, in order to prove Theorem 1.1, it is sufficient to
consider

vit ey 7 G =2, =1
’iE]Ij

Proof of Lemma 4.1. By (4.1), since &; is continuous (see Remark 3.1), for
any w € P,,, there exists a’ € w such that y;l, = &(a’). Revisiting the
decomposition (3.3), and using (3.2) and the §-Holder continuity of a — ¢4 (u)
(as for (3.16)), we find C such that for all i > 1 and w € Py,

€i(a) = xi(a)] = [&(a) = &(a)] < O(lwl’ + |ai(w)[7) < Clzi(w), Va € w,

where we used § < w and (2.7) in second inequality. This establishes (4.2),
since for any Aop € (B, \/AcE - e~¥BC), there exists C such that

(4.6) |z (w)] < C - )‘CE i Vw € Piyyy Vi
To show (4.6) first note, using (2.29), that there exists a € w such that

zi(w)] < C

|27, (W)

(T3 ) (xi(a))|

36The constant C in (4.3) goes to infinity as § — 0, i.e. if v — 2/5.
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Then, if a € Q,, the polynomial recurrence (2.8) and standard arguments
give

(4.7) (T2 (wi(a))] = Cim™ A5k

(see e.g. [BS1, Prop. 3.7] in the exponentially recurrent case). If a ¢ Q., we
may use bounded distortion (2.31) (a = 0 suffices here) since [w N Q| > 0.

The equality in (4.3) follows from the definition since F., C 7, ;. Indeed,
for a € w € Py,

(48) |0 QLB F)@ = [ guydm

wNQ

= Y lnag Jurngz Si+i dm
* lw' NQZL|

w’EP*,riJrj
w'Cw
— ! » L — L
= § lw' VL] Xitjlw = § / ” Xi+j dm .
!
w’EP*,ri+j W/GP*7Ti+j w ﬂQ*
w'Cw w'Cw

Since supy, ||€x||z>~ < 0o, we may and shall assume that j > 2i% to prove the
upper bound in (4.3). For such j, recalling n € (0,1/2) from (3.6), define

(4.9) k= k(i, j) Zmax{” [0 =), FHH

1+mn

so that k <i+j — (7 —4°) <i+jand i+ j < k(1+n).
Since § is fixed, we may and shall assume that ¢ is large enough such that
k(i,7) > N1 (with Np from Lemma 2.3) and

(410)  max{Ag UV, gl ()0t oy <o
Since k(i,j) > r;, we have, similarly as for (4.8),
|E (it | Fr) (@) = [E(E(§iti| Frg ) Fr) (@), Va €D € Py, .

We must analyse the above decomposition more closely than in the proof of
[Sch, Lemma 6.1]: Let a € @ € Py, then

(4.11)

- lw N QF

@ N QL] BB (&5l Frp) 1 Fre) (@) = | Y wna?|  Sitg dm

WEPx k(4,5) * w2
wCw
w
<| ¥ s wlalie 3 o\ @nes).
wEP*,k(i,j) w a wEP*’k(i’j)
wCw wCw

Since @ € Py, the bound (2.10) implies

ZwEP*yk(i,ﬁ \w\(wﬁQ*)\ B
WCD doer(i,j)—r; @]

(4.12) Q7] S ey = Cdoep(i—io)) »

~1 1 @ ||
j@I/1e N < =gpe, 1 <€
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In view of (2.10), (4.12) and (4.11), it suffices to show

1 .
_ / &‘H' dm‘ < len(l, 6[77(]-_%5)}) ) Yw € P*,k(i,j) .

Fix w € 73* k(ij)- First note that, by (2.31) for a =0,

¢ L
ol LS = | Stk ).

Then, on the one hand, Lemma 3.3 for £o = 1 gives ag € w N Qf such that

1 / —1 i+ k
Eirg (115 () — @ao (Tad 7™ dy
< C)\ak(l’J) < C)\a(i+j)/(1+77) )

(4.13)

(4.14)

On the other hand, recalling 0 < s < 1/g, since 1., (,,) € H; (uniformly in &

and w) the first claim of Proposition 2.5, with f Paoditay = 0, gives®7

‘/ eao (Tag” " (y »dy‘ < C - k(i, )0t DI RGD
|xk )| )

(4.15) <C-(i +9)Ho+1pn(j—i5)/(1+n) < O - (24) ot/ i/ (2+2n)

(We used |zg(w)| > Ck~™*! from Lemma 2.3.) Putting together (4.13),
(4.14), (4.15) and (4.10), we conclude the proof of (4.3). O

4.2. Law of Large Numbers for y?. Recall that v € (2/5,1/2) is fixed.
The main ingredient in the proof of Theorem 1.1 is the following analogue of
[Sch, Lemma 6.2], itself inspired by [PS, Lemma 3.3.1]:
Lemma 4.2. For my-a.e. a € Qf, there exists C(a) such that

M(N)

(4.16) 'N— > yi(a)

J=1

<C(a)N*", VYN >1.

The proof of Lemma 4.2 (which uses Proposition 3.2 and (4.2), but not
(4.3)) is based on the following theorem ([GK], see also [PS, Theorem A.1]).

Theorem 4.3 (Gél-Koksma’s Strong Law of Large Numbers). Let z;, j > 1,
be zero-mean random variables. Assume there exist p > 1 and C < oo with

m4n 2
E(Z zj> <C((m+nP—-—mP), YVm>0andn>1.
j=m+1

Then for all v > 0, we have ﬁ ZT-Z: zj — 0 almost surely.

Proof of Lemma 4.2. Set wj = Zleﬂ &;. Since y] - w = (y; + w;j)(y; — wj)
and |y; + wj| < C5%3, the bound (4.2) gives C such that |yj - w]2| <
Cjz/?’;\_ej(; for all j > 1 and a € Q. /s Hence, sup,cqr 251 \yJQ — w?|

is finite, and it suffices to show (4.16) w1th y; replaced by wj.
37A factor |zx(w)| ™" was omitted when applying [Sch, Prop. 4.3] on p. 400 of [Sch]: We

fix this by using our polynomial lower bound on |zx(w)| (considering two different values
of ¢ should work for [Sch]).
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By (3.8) we have |E(w]) #1L;| < C, and, since (N) #I; = N, we get
|Zj]\/i(1N) E(U)JQ) - N’ < CM(N). Therefore,
‘ M(N)

(4.17) < CM(N

N — Zw

7j=1

Assume there exists C' such that

m+n 2

(4.18) ( > wi—E(w)) ) < C((m+n)*B—m¥3, ¥m>0,n>1.
j=m+1

Then Theorem 4.3 (Gal-Koksma) applied to ¢ € (0,10(y —2/5)/3], p = 8/3,

and the zero-mean random variables z; = wjz — E(wjz-), implies that

Z w? — E(wj?) = O(M%“) , almost surely .

Hence, (4.17) gives | N — Zj\/[(l a)‘ C(a)N*/5+34/5> < C(a)N?Y, almost
surely (recall M(N) ~ N3/° by (4 4)). It remains to prove (4.18).
By Jensen’s inequality we have (E(w )) < E(w ) and therefore

(4.19) E(iin w? — E(w?))2

m-+n m+n
<2 Y (Bwh+ S Bl - B EWD)).

k=j+1
We consider first E(w ) Fix v € (0,1/6) and, for j > 1, let

S; ={ve ]Ij | v1 < vy < wg < vy and max{vy — vi,v4 — vz} > jU}.

Then, since #({7 € I} | v1 <wa <wz <y} Sj) < (j2/3F0)2 = j4/3H20 e
find

Juw@ia=3

aj<C Y

/Hm

/Hm

QF Qx /=1 €H4 Qx /=1
v1<.. <’U4
(4.20) <C) / ng )da| + CjY/3F2

ges; 1 =1
Let ¢ € S be such that vy — vz > j¥. For w € P, such that w N Qf # 0,
the change of variable in equation (3.13), together with an easy variant of

Lemma 3.3 deduced from (3.14), give ap € w N QF such that

1 4
Lﬁmwm

@l

C

|z (W)

/< Glmxml )%MW4W)My+C%“-
Tog w)
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For y € x,,(w), setting a = x4,|;1(y), and recalling Remark 3.1, we find
[€or (a5 (1)) = Paq (o, © Ty |5 ()]

= |90a(xvz © xv3|u_)1(y)) - Qoao(xve ° $U3|;1(y))| < C|w’0’
for £ =1,2,3. Thus, (2.9) and (2.7) imply (using supy, [|€x||~ < 00)

C)‘C%so v3
(4.21) ng )da| < Cey, + Z | % >’+C)\
Qf e wEPy, Tos
3
+ ¥ el | (Hsoao<xwo<xz,3|;1>< ) e (T2 1) .
GP* ;U3 IEUS(UJ) Z:].

We claim that, for £ = 1,2, 3, and for each w € Pj 4,
(4.22) 10y (0, © (205 |51)) W) < CV° s Yy € 2y ().
Indeed, by (2.29), there exists a € w such that

10y (0, © (205 |5)) (W) < CUTZ2 ) (T () 7t

Thus, if a € Q,, standard arguments (see e.g. [BS1, Prop. 3.7], using our
polynomial recurrence (2.8)) give the claim. Otherwise, since |w N | > 0,
we may use (2.31) as for (4.6).

Therefore, we find C such that for each v3 and w € Pi o,

3

ey, @) - [T(Pa0 © 2o 0 20l < Clo102) g [E= a0l 15 -
/=1

Indeed, on the one hand, there exists C' such that, for any C? map T, we
have

[€ag © Tlle= < Csup [T’ [[¢agllc= -
On the other hand, since 0 < s < 1/¢q < 1, the characteristic function of

an interval is a bounded multiplier on H(I) (uniformly in the size of the
interval), and since s < w, a function in C% is a bounded multiplier on
HZ(I) ([St, Th).

Hence, by the first claim of Proposition 2.5 (with (3.2) and [ ¢q,dpq, = 0),
we have

Ux”:a (@) (Hz’Zl Pao (T, © Tug |5 ")) Pao (Tan ™) dy|

|Z0s (W)

wg P
< C(v1v)™r0
A D]

< CjIOWHO/gvglij '

(We used Lemma 2.3 and that vy € I;, implies vy < C'j%/3,). Next,

/mngda

* f=1

/345
< Cleggorsy + 31070220135 4 25130 < Ceyjore)

for all ¥ € S with vq4 —v3 > j¥ (if j is large enough).
Let now ¥ € S; with vg —wv; > j¥. Then applying directly Lemma 3.3
with £y = 4, a similar reasoning gives |fw H;}Zl &y, da| < Ce[cjs/a].
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Finally, since #5; < #I1 < j8/3 and ¢; < j~"0*! with diko > 3 > 9/5,
the bound (4.20) gives C such that3®

(4.23) E(w?) < C(j 8/3 €509 +j4/3+2v) < O3t Vi>1.

We next bound |E(w wi) — E(w?)E(w,%)] fork>j+1. Ifk=j+1, by
Cauchy’s inequality and (4.23),

E(wjwi,) < \/Bw})E(w},) < Cj°°.

By (3.8) we have E(w E(w- 1) < C§*3. Hence

)
(4.24) |B(wiw?yy) — E(w)E(wi,)| < 0577,
Jj+

(
Assume now that k£ > j 4 2. By construction, y; is constant on elements of
Py if v > rj, = j1 + [§}], where j; is the largest number in I;. Let
k5/3

ko = ko(k) := I, > ——.
0 0() mlnk C

1/4

J

Then, for large enough j, using that = — x — x*/* is increasing for large =,

we find
ko — ko't > gy + #Lie1 — G+ #L0)Y4 > 50+ 277 — 200 > 0+
Since k > j+2 and 6 < i, we have that y; is constant on elements of P, for
v = (ko) = [ko — k/*].
1/4

Lemma 2.3 gives [z, (w)| > Aako if w € Py(ky)- Thus, there exists a
refinement Q) of Py(x,) such that,

0
AT < @y (@)] < 0(ko) ™/ = [ko — kY Ve € Quury) -

Therefore, for large enough k, the local bound (3.9) in Proposition 3.2 gives
for all w € Q, with non-empty intersection with Qf that

1
M/w,%dm—#]lk

since n = #I; = [k*/3] < nko/2. As in (3.11), we write Q. , for the set of
w € Q, with nonempty intersection with Qf, and Q*Qﬂ] = UQ, . Thus, using
that y; is constant on each w € Q, (since Q, refines P,),

1
2 2 2 2
: d TE R d
/Q (ijk) m E |w] y]|w ’ ‘/wk m

*50 wegk

c [ /Q | i Am(#l = O), /Q i dm(# + O)

*,U

<,

Recall that 7 < k — 2. Since ]y]2| < CjY3 < CK*M3 ) we get

1 2 _ 2
m(ng) /Q*Qw yj dm - E(y]) +O(1)7

38For the purposes of the present lemma, a version of (4.23) with C5/% in the right-hand
side would suffice. The stronger statement is needed for (4.31).
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by (3.10) applied to ¥y, = y]z, and since \y?w,%] < Ck¥/3, we have
o
m(Q*Q,v)
by (3.10) applied to ¥y = (y] w?). That is,
|E(ywi) — #LE(y;)] < C(E(y;) +1).
Next, the global estimate (3.8) in Proposition 3.2 gives |E(y32)E(w]%,) -
#]IkE(y]Q)\ < C’E(y?) Therefore”
|E(yfwi) — E(y]) BE(wi)| < CRE(yF) +1)) < C#1;.
Hence, for large enough j and all k£ > j + 2, since sup |w; + y;| < C#I;,
|B(wiwp) — B(wi)E(wi)| < |E(yjwi) — E(y?)E(wz%)l
+E(yjw) — B(wjwi)| + | B(w]) E(wi) — E(y]) E(wy)|
< O#1; + CE(w}) sup |wj — y;| - sup |w; + y;|
(4.25) < O3 4 CR?B2BAY

o Dy am = EGu) + 001,

55/3

_6]55/3

(We used (4.2) to get sup |w; — y;| < C#L )
Finally, we plug (4.25), (4.24), (4.23) into (4 19), and get, since 2v < 1/3,

(S wmwd)

j=m+1
m+n o/ 00 0/3%_0:55/3 m+n 5/s m+n 23
chk/Z/AJ+CZ</+Z/)
k=m+3 j=m+1 j=m+1 k=j+2
m-+n
(4.26) < C((m+n)5/3 mb/3 & Z ( 5/3 4 +(m+n—7)j 2/3)) _
j=m+1
This proves (4.18). O

4.3. Martingale Differences Y;. Skorokhod’s Representation The-
orem. As in Schnellmann’s adaptation of [PS, Section 3.4-3.5] in [Sch,
Section 6.3], let £; be the o-algebra generated by {y¢}1</<;, and set

(4.27)  wj =Y E(yipx | Lio1),  Yj=yjtuj—u;,  j>2.
k>0

Then {Y}, £;} is a martingale difference sequence. Using (4.3), we show that
{Y;} inherits the law of large numbers established for {y;} in Lemma 4.2:

Lemma 4.4. For my-a.e. a € QF, there exists C(a) such that

M(N)
(4.28) ‘N— Z Ya)| < C
j=1

(@)N*', VYN >1,

39The expression #I; = =4 = j in the right-hand side already leads to v > 2/5. See
Footnote 34.
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and
M(N)

(4.29) > E(Y}?|Lj1)-Y(a)| <C(a)N*, VN =>1.
j=1

Proof. Recalling the o-algebra F,., generated by the intervals in P,,, we have

Loy C Fryyy, where i(f) = max{i € [, } < C(°/3 by (4.4). Then

ue =Y E(E(&ys) | Frip) | Lo1)-
i>1

Since » 7%, e; < 00, the bound (4.3) in Lemma 4.1 gives

. 2C .
(430) |U@(a)’ < Z Cmm{l, €[n(j_2i(£)6))]} < 72(€>6 < 0656/3 .
j>1

Put v; = u; — uj41, so that Yj2 = y? — 2y;v; + v?.
We claim that (4.28) follows if for a.e. a € Qf, there exists C such that

Zj]\i(lN) v]? < CN*~1. Indeed, since 7 < 1/2, Lemma 4.2 and Cauchy’s

inequality then give (using Z]]Vi(lN ) y? < CN)

M(N) M(N)
‘N— IRAEILED SRR
i=1 j=1
M(N) M(N) M(N)  M(N)
SLED W ED SEEND D I
j=1 j=1 j=1 j=1

< C(a)N*' + CON?' + CVNNH-1 < C(a)N?7.
But since we have v? < Cj19/3 (by (4.30)), we find, using § < 2(y — 2/5),

M(N)
Z ’(}]2- S CM1+105/3 S N3/5+25 S CN4'yfl )
j=1

It remains to prove (4.29). Set R; = Yj2 — E(YJ2 | £;_1) and observe that
{Rj, L;} is a martingale difference sequence. By Minkowski’s inequality

B(R) < (\/BOP) + \JBEOF [ £007) < (2/BO7)) =18},

Since Y; = y; — vj, we have, again by Minkowski’s inequality,

B(R) < 4B(V}) < 4((B)} + (B@))H) < OB + B

< C(E(wj) + B(|lwj — yj]) + B(v])) .

Since w;*—y? = (wJQ-—I—yJQ-)(wj—I—yj)(wj—yj), we get from (4.2) that E(]w}l—yﬂ)

is uniformly bounded. By (4.30), we have |u;| < Cj°/3. Hence, |v;| <

luj| 4 [uj—1| < C§%/3, and E(v;l) < Cj29/3 < C§*/3, since § < 1/5. For
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arbitrary ¢ > 0 the bound (4.23), gives C such that E(w?) < Cj4/3+ Thus
E(R3)
J
(4.31) > S <%0
i>1

and a martingale result (see [Ch|) implies that >, R;/ §7/6+ converges
almost surely. For m,-a.e. a € Qf, Kronecker’s Lemma gives C(a) with

M(N)

Z Rj < C(a)M7/6+L < C(a)N21/30+L’

j=1
using (4.4) in the last inequality. Since 21/30 < 2+ this establishes (4.29). O

We shall apply the following embedding result. (See [HH, Theorem A.1].)

Theorem 4.5 (Skorokhod’s Representation Theorem). For any zero-mean
square-integrable martingale {>°7_, Yy, L; | j > 1}, there exist a probability
space supporting a (standard) Brownian motion W, and nonnegative variables
{Th, k> 1}, such that {37 _, Yitj>1 and {W(>_7_; Tk)}j>1 have the same
distribution, and, in addition, letting Gy be the trivial o-algebra (the empty
set and the entire space), and G;, for j > 1, be the o-algebra generated by

J
{W(t)|0<t<T7}, whereT;:= ZTk,
k=1

then 7; is Gj-measurable, while E(Ty | Go) = E(W (T1)?* | Go), and
E(T; | Gj—1) = E((W(r)) — W(Tj_l))2 | Gj—1), Vj=>2, almost surely.

By the last claim of Theorem 4.5 and properties of Brownian motion
(4.32) E(Tj | Gj1) = EW(T))? | Gj-1),  Vi>1,
almost surely. (Indeed, letting W7 be an independent copy of W we have
W(Tj) = Wl(Tj,1 +T]) =W (ijl) +W(Tj) in distribution, so that W(’Tj) —
W (rj—1) = W(T}) in distribution.)

We need one last lemma. Recall that v € (2/5,1/2) is fixed.
Lemma 4.6 (Strong Law of Large Numbers for the Sequence T}). For
my-a.e. a € QF, there exists C(a) such that
M(N)

N->"T,

J=1

(4.33) <C(a)N*", VYN >1.

Proof. To start, apply Theorem 4.5 to the martingale difference sequence Y;

from (4.27), with £; generated by {ye}1<¢<;. Let Y; = W(r;) — W(1j_1), so

that W(rj) = >1_, Y}, and Y; = W(T}). By (4.32), we have, almost surely,
M(N)

M M
N Y = [N S B 16
=1 i=1

<
I
—_

+ ) [B(T;1Gj—) = Ty], YN > 1.

M=

<
I
—
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Then, since Y; and Y; have the same distribution, the bound (4.28) in
Lemma 4.4 gives C'(a) such that, for all N > 1, the first sum in the right-
hand side above is not larger than C(a)N?7 .

For the second sum in the right-hand side above, we use (4.29). Since
conditional expectations can be expressed in terms of distributions, (4.29) is
also valid with Y} replaced by }7] Thus the second sum in the right-hand
side is also bounded by C(a)N? for all N > 1.

Finally, let R; = E(Tj | Gj—1) — Tj. Then {R;,G;} is a martingale
difference sequence by (4.32). As in the proof of (4.29), we can estimate
E(RJQ) < 4E(W(T;)*), and thus there exists C(a) such that, for all N > 1,

we have Zj]vi(lN) R; < CN?/30+ < C(a)N? almost surely. O

Proof of Theorem 1.1. Just like Schnellmann, we follow the proof of [PS,
Lemma 3.5.3], replacing their 1/2 — «/2+~ by 7, and replacing Lemma 3.5.1
there by our Lemma 4.6. We then obtain that, almost surely,

M(N)
> Y;=W(N)|=O(N").
j=1

Then, using (4.30) and (4.4), we find

(N) M(N)
@34) | >y =Y =] D (wjrr —wy)| = lunwys — ua] < ON°.
=1 j=1
Since 0 < 2/5, and recalling (4.5), this establishes Theorem 1.1. O
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